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Low latency Is increasingly important
INn data processing systems

Data processing Is used today In online systems.
e Stream processing
e Graph processing

e Control systems

Data processing at large scale also requires the
abllity to recover results after a failure.
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Stream processing example

Display the number of times “UCB” has been queried.

{

user 1id: ..
keyword:
“UYCB” , “UgCcB” +1 -
} N
»| Select —»| Filter |— Counter —

state: 1

g—v____J

10s of milliseconds

4



Stream processing example

{
user 1
keywe user {
uogy- keywe user_id: ..,
} “Be: keyword:
} “Go bears”,
}
Select
[ “Go bears”,
“Beat Stanford”,
llCallI]
Filter
Task: A few to 10s of milliseconds
Counter

-Time——



Stream processing example

Select 1

Select 2
Filter

Counter




Stream processing example

Select 1 O

Select 2

Filter

Counter
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Global checkpointing

Select 1 '
[ 1 UCB n ,
“Bears” ]

Select 2
[ IIUCB ”n ,
v
(O (O)— K

Counter

Filter
A
IIIIIIIII'*+2 )

-Time——
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Global checkpointing

Select 1
[ “UCB”
Bears ]

Select 2
[ “UCB”
“UCB” ]

Filter Roll back failed process

Counter b




Global checkpointing

Select 1

Roll back upstream processes
Select 2
Filter

+2
Counter




Global checkpointing

Select 1

Select 2

Filter

Counter




Global checkpointing

Select 1
7 [ 44 UCB n ,
“Bears” ]
Select 2 ' ‘
[ 44 UCB n ,
IIUCB ”n ]
OY—C
+1
+2

Counter '




Global checkpointing

Select 1
[ 114 UCB 144 ,
“Bears” ]
Select 2 O\
[ 44 UCB 144 ,
IIUCB 144 ]
Filter
Must also roll back
Counter
downstream processes
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Global checkpointing

Select 1

Select 2

Filter

Counter




Global checkpointing

Select 1

Select 2

Filter

+2

Counter




Global checkpointing

Take a global checkpoint on some interval
and do a global rollback on any failure

Low runtime overhead
High recovery overhead
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Tradeoff between low
latency and recovery time

x Global
checkpointing
Recovery
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Logging

Select 1
[ 114 UCB 144 ,
“Bears"” ]

Select 2
[ 14 UCB 144 ,
IIUCB 144 ]

Filter
+1
Counter

19



Logging

Record messages \



Logging

Record nondeterministic

execution order




Logging

Select 1
[ 14 UCB n ,
“Bears” ]
Select 2
[ 44 UCB ”n ,
IIUCB ”n ]
Filter
+2
Counter

22

+1



Logging

Select 1 .

[ IIUCB" ,
“Bears” ]

Select 2 ' ‘

[ 1 UCB ”n ,
\ UCB" ]

Filter

+2

Counter ‘
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Logging

Select 1
[ 14 UCB n ,
“Bears” ]
Select 2
[ 44 UCB n ,
IIUCB 144 ]
Filter
Counter
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Logging

Select 1 ‘

[ IIUCB" ,
“Bears” ]

Select 2 ‘

[ H UCB ”n ,
UCB” ]

Filter — ‘—} ‘

Counter ‘
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Logging

Select 1 .

[ IIUCBII ,
“Bears"” ]

Select 2 ‘

[ H UCB ”n ,
UCB” ]

Filter — ‘—} ‘

Counter ‘ ‘
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Logging

Record additional info
checkpoints so that on

'mation between
y failed processes

need to be ro

Low recovery

led back

overhead

High runtime overhead




Log the lineage to reduce
the amount logged

Select 1

Select 2

Filter

Counter




Log the lineage to reduce
the amount logged

Select 1

Select 2

Filter

Counter
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Pointers to data



Log the lineage to reduce
the amount logged

Task descriptions

Select 1
“Bears"” ]
Select 2
[ 14 UCB 144 ,
IIUCB 144 ]
Filter
+2 +1
Counter

-Time———> Pointers to data
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But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

Global Lineage Storage
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But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

. Global Lineage Storage
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But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

_ Global Lineage Storage
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But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 I Filter Counter
VWl e
! WO " tmmmmm==="
) } ) 3
L\ ) 3
'\ ) 2
Y A 3
N “
LN ) )
S ) )
I .
so Global Lineage Storage
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But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

' i: e Il_ ! —————— , Ve . :‘ *

\‘ s‘ ------ . - \‘ " " ', :

\ Y ) 3 | \ ps ? @

. A 1 L S~ , ¢ I

A} s L} A WK 4 S |

‘ “ ‘ " "' '

“ \ , “ ' 'l

\ lec)bal L\I’ueabe Storage

\l\ |

i

Scheduling delay /task >= 1RTT + 1RPC
Task latency depends on global storage latency
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Lineage stash contribution

How do we achieve both low runtime and low
recovery overhead for fine-grained data
processing applications?

Solution: Asynchronously log the lineage
off the critical path of execution.

Lineage reconstruction to reduce amount logged

Causal logging to log nondeterminism
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Lineage stash architecture

Replicated for
durability.

Persistent key-value store.

\Sharded for horizontal scalability

Global Lineage Storage
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Lineage stash architecture

Select 1 Select 2 Filter Counter




Lineage stash architecture

Select 1 Select 2 Filter Counter

Object store Obiject store Object store Object store

N\ /[

Local, volatile cache for application objects.
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Lineage stash architecture

Select 1 Select 2 Filter Counter

Stash Stash Stash Stash

N

Local, volatile cache for lineage.



Lineage stash: Logging the
lineage, asynchronously

_%elect 1 Select 2 Filter Counter

Stash Stash Stash Stash

Global Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Scheduling delay / task = 34RH + 1RPC
Task latency independent of global storage latency




Lineage stash: Logging the
lineage, asynchronously

elect 1 Select 2 Filter Counter
Stash Stash Stash Stash

Global Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Scheduling delay / task = 34RH + 1RPC
Task latency independent of global storage latency




Lineage stash: Logging the
lineage, asynchronously

elect 1 Select 2 Filter Counter
Stash ‘Stash \ LStash -VO Stash
B e | TR 1=

—

‘L~ Global Lineage Storage
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(2) Asynchronously flush to remote storage.

Scheduling delay / task = HRH + 1RPC
Task latency independent of global storage latency




Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+ _
“Beat S Filter
llcalll]

O

Counter

Stash Stash

[ 14 UCB n ,
4UCB" ] O Global Lineage Storage

O

O
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Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+ _
“Beat S Filter
llcalll]

Counter

Stash Stash

O

[ 14 UCB n ,
4UCB" ] O Global Lineage Storage

O

O
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Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+ _
“Beat S Filter
llcalll]

Counter

Stash Stash

O

[ 14 UCB n ,
4UCB" ] O Global Lineage Storage

O

O
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Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter Counter
“Cal”] Stash Stash

[ 44 UCB n O
u{JCB" i O Global Lineage Storage O

O




Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter Counter
“Cal”] Stash Stash

[ 11 UCB 144 O O
u{JCB" i O Global Lineage Storage O

O
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Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter (j)+2 Counter
“Cal”] Stash Stash

[ 44 UCB n O O
u{JCB" i O Global Lineage Storage O

O
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Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter (j)+2 Counter
“Cal”] Stash Stash

[ 44 UCB n O O
u{JCB" i O Global Lineage Storage O

O
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Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter (j)+2 Counter
“Cal”] [[stash ‘ Stash
%) Uncommitted
I O O Lineage
“UCB" ] o Global Lineage Storage o

(3) Forward uncommitted lineage.



Lineage stash: Logging the
lineage, asynchronously

“Go bear—*“——mr
“Beat S Filter i) Counter

+2

___________
- i
- ~

“Cal”] Stash t’ Stash
%) Uncommitted %)

I O O Lineage
u " ’ Global Lineage Storage
UCB" ] O

O
(3) Forward uncommitted lineage.
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Lineage stash recovery

Filter Counter
Stash Stash
O O

Global Lineage Storage

O

O O




Lineage stash recovery

Counter

Stash

T

-
\Qlobal Lineage Storage

‘\
A A

O

54



Lineage stash recovery

Counter

Stash

T

.
' O
LY A
Y
.
v 0O
.
.
.

\Qlobal Lineage Storage

i a—
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Lineage stash recovery

Counter

Stash

Y

.
' O
LY A
Y
.
v 0O
.
.
.

\Qlobal Lineage Storage

i a—

O




Lineage stash recovery

Filter (1) Flush Counter
Stash uncommitted | [stash
ineage ,O=>C%>

GIobg#T.meage Storage

O\g 3
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Lineage stash recovery

Filter (2) Ack Counter
Stash < _f_e_QQ\_/_e_rlr_]g_ | |Stash
Orocess ,O=f§%>
—v_" "'
;'

Global Llneage Stdrage

A
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Lineage stash recovery

Filter (3) Retrieve Counter
Stash and replay Stash
cg=>0,‘ ineage O=F>C%)

\ Global Lineage Storage
‘\
‘ C%)
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Tradeoff between low
latency and recovery time

x Global
checkpointing
Recovery
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Lineage
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X Logging

Runtime overhead
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Latency without failures

1.0
g g/ Streaming wordcount: <+—Better—
| -32 mb5.xlarge nodes

. 0.6 -30s checkpoint interval
a
0.4

0.2-

0.0 . . | |

0 100 200 300 400 500

Latency (ms)
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Latency without failures

1.0

0.8
, 0.6
O
“0.4

0.2

0.0

~

Global checkpointing

<+—Better—

= FlINK

0

100 200 300
Latency (ms)

62

400

500



Latency without failures

1.0
<+—Better—

0.8-
o 0.6 e Flink
“0.4 ogging the lineage WriteFirst

synchronousl
0.2 Y Y \
0.0

0 100 200 300 400 500
Latency (ms)
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Latency without failures

1.0
<+—Better—
0.8-
L 0.6 - FI|r'1k |
8 WriteFirst
0.4- - | INneage stash
Logging the lineage
0.2
asynchronously
0.0

0 100 200 300 400 500
Latency (ms)
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Throughput during recovery

5
— 4
.2
2 D
c O 3 ,
> Streaming wordcount:
O ; - 32 mb.xlarge nodes
= S 2 - 30s checkpoint interval
— — Flink
1- WriteFirst
Lineage
| | | stash
OZ 40 60 80 100

Time since start (s)
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Throughput during recovery

5
4
=3
e
25 3 , |
28 Global Streaming wordcount:
O ; , - 32 mb.xlarge nodes
= S 2 checkpoint - 30s checkpoint interval
= = F[Ink
1- WriteFirst
— Lineage
| | | stash
02 40 60 80 100

Time since start (s)
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Throughput during recovery

5

+
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2D
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£ O 2 fallure - 30s checkpoint interval
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= c = F[Ink
1- 2 WriteFirst
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Time since start (s)
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Throughput during recovery

5

+

—A—

Global rollback and replay

)
=,
8% 3h
8’ 8 Streaming wordcount:
O O - 32 m5.xlarge nodes
= S 2 - 30s checkpoint interva
) % = [ [INK
17 2 WriteFirst
é — Lineage
S . | | stash
%O 40 60 80 100

Time since start (s)
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Throughput

Throughput during recovery

5
— 4
&
D
S J
& Prodess new{records since failure
S
= = — Flink
1 2 WriteFirst
é —— Lineage
O | | | stash
OZO 40 60 80 100

Time since start (s)
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Throughput during recovery

5
. 4
9D
5% \ “4“ 2
3Tk e e T e e
2 § S
S < o Partial frollback
T o 2
= S .
— = —— Flink
1; WriteFirst
é —— Lineage
O | | | stash
02 40 60 30 100

Time since start (s)
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Latency during recovery

— Flink
WriteFirst
— Lineage

p—
o
NN

=
-
W

Median latency (ms)

a1 1 aal i i PO T

Streaming wordcount:
- 32 mb.xlarge nodes
- 30s checkpoint interval

20 40 60 80 100

Record timestamp since start (s)

/1

-
o
'_I " "



Lineage Stash

See the paper (or email me: swang@berkeley.edu) for:

e Discussion and evaluation of other applications
e Nondeterminism in data processing applications

e Protocols for flushing and recovering the stash

Key idea: Asynchronously log the lineage and forward
uncommitted lineage to guarantee recovery correctness.

Low latency during execution and low downtime after a
failure for large-scale decentralized data processing
applications.
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