Lineage Stash: Fault
Tolerance Off the Critical
Path

Stephanie Wang, John Liagouris, Robert Nishihara,
Philipp Moritz, Ujval Misra, Alexey Tumanov, lon Stoica




Low latency Is increasingly important
INn data processing systems

Data processing Is used today In online systems.
e Stream processing
e Graph processing

e Control systems

Data processing at large scale also requires the
abllity to recover results after a failure.



Tradeoff between low
latency and recovery time

Recovery
overhead

Lineage
X stash

Runtime overhead

3



Stream processing example

Display the number of times “UCB” has been queried.

{

user 1id: ..
keyword:
“UYCB” , “UgCcB” +1 -
} N
»| Select —»| Filter |— Counter —

state: 1

g—v____J

10s of milliseconds

4



Stream processing example

{
user 1
keywe user {
uogy- keywe user_id: ..,
} “Be: keyword:
} “Go bears”,
}
Select
[ “Go bears”,
“Beat Stanford”,
llCallI]
Filter
Task: A few to 10s of milliseconds
Counter

-Time——



Stream processing example

Select 1

Select 2
Filter

Counter




Stream processing example

Select 1 O

Select 2

Filter

Counter




Tradeoff between low
latency and recovery time

x Global

checkpointing
Recovery
overhead

Runtime overhead

8



Global checkpointing

Select 1 '
[ 1 UCB n ,
“Bears” ]

Select 2
[ IIUCB ”n ,
v
(O (O)— K

Counter

Filter
A
IIIIIIIII'*+2 )

-Time——

9



Global checkpointing

Select 1
[ “UCB”
Bears ]

Select 2
[ “UCB”
“UCB” ]

Filter Roll back failed process

Counter b




Global checkpointing

Select 1

Roll back upstream processes
Select 2
Filter

+2
Counter




Global checkpointing

Select 1

Select 2

Filter

Counter




Global checkpointing

Select 1
7 [ 44 UCB n ,
“Bears” ]
Select 2 ' ‘
[ 44 UCB n ,
IIUCB ”n ]
OY—C
+1
+2

Counter '




Global checkpointing

Select 1
[ 114 UCB 144 ,
“Bears” ]
Select 2 O\
[ 44 UCB 144 ,
IIUCB 144 ]
Filter
Must also roll back
Counter
downstream processes

14



Global checkpointing

Select 1

Select 2

Filter

Counter




Global checkpointing

Select 1

Select 2

Filter

+2

Counter




Global checkpointing

Take a global checkpoint on some interval
and do a global rollback on any failure

Low runtime overhead
High recovery overhead

17




Tradeoff between low
latency and recovery time

x Global
checkpointing
Recovery
overhead

X Logging

Runtime overhead

18



Logging

Select 1
[ 114 UCB 144 ,
“Bears"” ]

Select 2
[ 14 UCB 144 ,
IIUCB 144 ]

Filter
+1
Counter

19



Logging

Record messages \



Logging

Record nondeterministic

execution order




Logging

Select 1
[ 14 UCB n ,
“Bears” ]
Select 2
[ 44 UCB ”n ,
IIUCB ”n ]
Filter
+2
Counter

22

+1



Logging

Select 1 .

[ IIUCB" ,
“Bears” ]

Select 2 ' ‘

[ 1 UCB ”n ,
\ UCB" ]

Filter

+2

Counter ‘

23



Logging

Select 1
[ 14 UCB n ,
“Bears” ]
Select 2
[ 44 UCB n ,
IIUCB 144 ]
Filter
Counter

24



Logging

Select 1 ‘

[ IIUCB" ,
“Bears” ]

Select 2 ‘

[ H UCB ”n ,
UCB” ]

Filter — ‘—} ‘

Counter ‘

25



Logging

Select 1 .

[ IIUCBII ,
“Bears"” ]

Select 2 ‘

[ H UCB ”n ,
UCB” ]

Filter — ‘—} ‘

Counter ‘ ‘

20



Logging

Record additional info
checkpoints so that on

'mation between
y failed processes

need to be ro

Low recovery

led back

overhead

High runtime overhead




Log the lineage to reduce
the amount logged

Select 1

Select 2

Filter

Counter




Log the lineage to reduce
the amount logged

Select 1

Select 2

Filter

Counter

29

Pointers to data



Log the lineage to reduce
the amount logged

Task descriptions

Select 1
“Bears"” ]
Select 2
[ 14 UCB 144 ,
IIUCB 144 ]
Filter
+2 +1
Counter

-Time———> Pointers to data

30



But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

Global Lineage Storage

31



But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

. Global Lineage Storage

32



But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

_ Global Lineage Storage

33



But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 I Filter Counter
VWl e
! WO " tmmmmm==="
) } ) 3
L\ ) 3
'\ ) 2
Y A 3
N “
LN ) )
S ) )
I .
so Global Lineage Storage

34



But logging still requires a synchronous
round-trip to remote storage

Select 1 Select 2 Filter Counter

' i: e Il_ ! —————— , Ve . :‘ *

\‘ s‘ ------ . - \‘ " " ', :

\ Y ) 3 | \ ps ? @

. A 1 L S~ , ¢ I

A} s L} A WK 4 S |

‘ “ ‘ " "' '

“ \ , “ ' 'l

\ lec)bal L\I’ueabe Storage

\l\ |

i

Scheduling delay /task >= 1RTT + 1RPC
Task latency depends on global storage latency

35



Lineage stash contribution

How do we achieve both low runtime and low
recovery overhead for fine-grained data
processing applications?

Solution: Asynchronously log the lineage
off the critical path of execution.

Lineage reconstruction to reduce amount logged

Causal logging to log nondeterminism

36



Lineage stash architecture

Replicated for
durability.

Persistent key-value store.

\Sharded for horizontal scalability

Global Lineage Storage

37



Lineage stash architecture

Select 1 Select 2 Filter Counter




Lineage stash architecture

Select 1 Select 2 Filter Counter

Object store Obiject store Object store Object store

N\ /[

Local, volatile cache for application objects.

39



Lineage stash architecture

Select 1 Select 2 Filter Counter

Stash Stash Stash Stash

N

Local, volatile cache for lineage.



Lineage stash: Logging the
lineage, asynchronously

_%elect 1 Select 2 Filter Counter

Stash Stash Stash Stash

Global Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Scheduling delay / task = 34RH + 1RPC
Task latency independent of global storage latency




Lineage stash: Logging the
lineage, asynchronously

elect 1 Select 2 Filter Counter
Stash Stash Stash Stash

Global Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Scheduling delay / task = 34RH + 1RPC
Task latency independent of global storage latency




Lineage stash: Logging the
lineage, asynchronously

elect 1 Select 2 Filter Counter
Stash ‘Stash \ LStash -VO Stash
B e | TR 1=

—

‘L~ Global Lineage Storage

20

(2) Asynchronously flush to remote storage.

Scheduling delay / task = HRH + 1RPC
Task latency independent of global storage latency




Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+ _
“Beat S Filter
llcalll]

O

Counter

Stash Stash

[ 14 UCB n ,
4UCB" ] O Global Lineage Storage

O

O

44



Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+ _
“Beat S Filter
llcalll]

Counter

Stash Stash

O

[ 14 UCB n ,
4UCB" ] O Global Lineage Storage

O

O

45



Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+ _
“Beat S Filter
llcalll]

Counter

Stash Stash

O

[ 14 UCB n ,
4UCB" ] O Global Lineage Storage

O

O

46



Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter Counter
“Cal”] Stash Stash

[ 44 UCB n O
u{JCB" i O Global Lineage Storage O

O




Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter Counter
“Cal”] Stash Stash

[ 11 UCB 144 O O
u{JCB" i O Global Lineage Storage O

O

48



Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter (j)+2 Counter
“Cal”] Stash Stash

[ 44 UCB n O O
u{JCB" i O Global Lineage Storage O

O

49



Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter (j)+2 Counter
“Cal”] Stash Stash

[ 44 UCB n O O
u{JCB" i O Global Lineage Storage O

O

50



Lineage stash: Logging the
lineage, asynchronously

“"Go bear—+
“Beat S Filter (j)+2 Counter
“Cal”] [[stash ‘ Stash
%) Uncommitted
I O O Lineage
“UCB" ] o Global Lineage Storage o

(3) Forward uncommitted lineage.



Lineage stash: Logging the
lineage, asynchronously

“Go bear—*“——mr
“Beat S Filter i) Counter

+2

___________
- i
- ~

“Cal”] Stash t’ Stash
%) Uncommitted %)

I O O Lineage
u " ’ Global Lineage Storage
UCB" ] O

O
(3) Forward uncommitted lineage.

52



Lineage stash recovery

Filter Counter
Stash Stash
O O

Global Lineage Storage

O

O O




Lineage stash recovery

Counter

Stash

T

-
\Qlobal Lineage Storage

‘\
A A

O

54



Lineage stash recovery

Counter

Stash

T

.
' O
LY A
Y
.
v 0O
.
.
.

\Qlobal Lineage Storage

i a—

O




Lineage stash recovery

Counter

Stash

Y

.
' O
LY A
Y
.
v 0O
.
.
.

\Qlobal Lineage Storage

i a—

O




Lineage stash recovery

Filter (1) Flush Counter
Stash uncommitted | [stash
ineage ,O=>C%>

GIobg#T.meage Storage

O\g 3

o7




Lineage stash recovery

Filter (2) Ack Counter
Stash < _f_e_QQ\_/_e_rlr_]g_ | |Stash
Orocess ,O=f§%>
—v_" "'
;'

Global Llneage Stdrage

A

58




Lineage stash recovery

Filter (3) Retrieve Counter
Stash and replay Stash
cg=>0,‘ ineage O=F>C%)

\ Global Lineage Storage
‘\
‘ C%)

59




Tradeoff between low
latency and recovery time

x Global
checkpointing
Recovery
overhead

Lineage
\x stash

X Logging

Runtime overhead

60



Latency without failures

1.0
g g/ Streaming wordcount: <+—Better—
| -32 mb5.xlarge nodes

. 0.6 -30s checkpoint interval
a
0.4

0.2-

0.0 . . | |

0 100 200 300 400 500

Latency (ms)

61



Latency without failures

1.0

0.8
, 0.6
O
“0.4

0.2

0.0

~

Global checkpointing

<+—Better—

= FlINK

0

100 200 300
Latency (ms)

62

400

500



Latency without failures

1.0
<+—Better—

0.8-
o 0.6 e Flink
“0.4 ogging the lineage WriteFirst

synchronousl
0.2 Y Y \
0.0

0 100 200 300 400 500
Latency (ms)

63



Latency without failures

1.0
<+—Better—
0.8-
L 0.6 - FI|r'1k |
8 WriteFirst
0.4- - | INneage stash
Logging the lineage
0.2
asynchronously
0.0

0 100 200 300 400 500
Latency (ms)

64



Throughput during recovery

5
— 4
.2
2 D
c O 3 ,
> Streaming wordcount:
O ; - 32 mb.xlarge nodes
= S 2 - 30s checkpoint interval
— — Flink
1- WriteFirst
Lineage
| | | stash
OZ 40 60 80 100

Time since start (s)

65




Throughput during recovery

5
4
=3
e
25 3 , |
28 Global Streaming wordcount:
O ; , - 32 mb.xlarge nodes
= S 2 checkpoint - 30s checkpoint interval
= = F[Ink
1- WriteFirst
— Lineage
| | | stash
02 40 60 80 100

Time since start (s)

66




Throughput during recovery

5

+

=%
2D
o) 8 3 Streaming wordcount
I W Unt.
5 E Node - 32 md.xlarge nodes
£ O 2 fallure - 30s checkpoint interval
O - .
= c = F[Ink
1- 2 WriteFirst
3 - |ineage
-
O | | | stash
OZO 40 60 80 100

Time since start (s)

67



Throughput during recovery

5

+

—A—

Global rollback and replay

)
=,
8% 3h
8’ 8 Streaming wordcount:
O O - 32 m5.xlarge nodes
= S 2 - 30s checkpoint interva
) % = [ [INK
17 2 WriteFirst
é — Lineage
S . | | stash
%O 40 60 80 100

Time since start (s)

68




Throughput

Throughput during recovery

5
— 4
&
D
S J
& Prodess new{records since failure
S
= = — Flink
1 2 WriteFirst
é —— Lineage
O | | | stash
OZO 40 60 80 100

Time since start (s)
69



Throughput during recovery

5
. 4
9D
5% \ “4“ 2
3Tk e e T e e
2 § S
S < o Partial frollback
T o 2
= S .
— = —— Flink
1; WriteFirst
é —— Lineage
O | | | stash
02 40 60 30 100

Time since start (s)

70




Latency during recovery

— Flink
WriteFirst
— Lineage

p—
o
NN

=
-
W

Median latency (ms)

a1 1 aal i i PO T

Streaming wordcount:
- 32 mb.xlarge nodes
- 30s checkpoint interval

20 40 60 80 100

Record timestamp since start (s)

/1

-
o
'_I " "



Lineage Stash

See the paper (or email me: swang@berkeley.edu) for:

e Discussion and evaluation of other applications
e Nondeterminism in data processing applications

e Protocols for flushing and recovering the stash

Key idea: Asynchronously log the lineage and forward
uncommitted lineage to guarantee recovery correctness.

Low latency during execution and low downtime after a
failure for large-scale decentralized data processing
applications.

(2


mailto:swang@berkeley.edu

