
Ownership: A Distributed Futures System
for Fine-Grained Tasks

Stephanie Wang, Eric Liang, Edward Oakes, Ben Hindman,
Frank Luan, Audrey Cheng, Ion Stoica

Outline

1. An overview of distributed futures

2. System requirements and challenges

3. Ownership: Achieving fault tolerance without giving up

performance

4. Evaluation

RPC model

Driver Worker 1 Worker 2

o1=f()
o1

o2=f()
o2

o3=add(
 o1,o2)

o3

o2o1

o1 = f()
o2 = f()
o3 = add(o1, o2)

Problems:

● Data movement

● Parallelism

Data movement: RPC model +distributed memory
Driver Worker 1 Worker 2

o1=f()

o3=add(
 o1,o2)

o1

o1

o3o3

o2=f()

o2

Distributed memory: Ability to
reference data stored in the
memory of a remote process.

● Application can pass by
reference

● System manages data
movement

Parallelism: RPC model +futures
Worker 1 Worker 2

o2=f()o1=f()o1

o2

o3=add(
 o1,o2)

o2o1

o3

Driver Futures: Ability to reference data
that has not yet been computed.

● Application can specify
parallelism and data
dependencies

● System manages task
scheduling

Distributed futures

● Performance: System
handles data movement and
parallelism

● Generality: RPC-like interface
(data is immutable).
Application does not specify
when or where computation
should execute.

Driver Worker 1 Worker 2

o1=f() o2=f()

o1 o2
o3=add(
 o1,o2)

o3o3

o1

Distributed futures today

Distributed futures are growing in popularity, with applications in a
variety of domains:

● Data processing: CIEL, Dask

● Machine learning: Ray, Distributed PyTorch

Most systems focus on coarse-grained tasks (>100ms):

● A centralized master for system metadata.

● Lineage reconstruction (re-execution of the tasks that created
an object) for fault tolerance.

A distributed futures system for fine-grained tasks

For generality, the system must impose low overhead.

Analogy: gRPC can execute millions of tasks/s. Can we do the

same for distributed futures?

Goal: Build a distributed futures system that guarantees fault
tolerance with low task overhead.

Enable applications that dynamically generate fine-grained
tasks. → Check out the paper for more details!

Outline

1. An overview of distributed futures

2. System requirements and challenges

3. Ownership: Achieving fault tolerance without giving up

performance

4. Evaluation

Distributed futures introduce shared state

f()

f()

driver

add(o1,o2)

o2

o1
Invocation

Legend

Task (RPC)

Data dependency o1

Multiple processes refer to the same value.

Distributed futures introduce shared state

add(o1,o2)

f()

f()

driver

o2

o1o1o1

Dereferencing a distributed future requires coordination.

1. The process that specifies how the
value is created and used.

2. The process that creates the value.

3. The process that uses the value.

4. The physical location of the value.

Requirements for dereferencing a value:

● Retrieval: The location of the value

● Garbage collection: Whether the value is referenced

Requirements in the presence of failures:

● Detection: The location of the task that returns the value.

● Recovery: A description of the task and its dependencies.

● Persistence: Metadata should survive failures.

System requirements

Requirements for dereferencing a value:

● Retrieval: The location of the value

● Garbage collection: Whether the value is referenced

Requirements in the presence of failures:

● Detection: The location of the task that returns the value.

● Recovery: A description of the task and its dependencies.

● Persistence: Metadata should survive failures.

Challenge: Recording this metadata, while ensuring
latency and throughput

for dynamic and fine-grained tasks.

System requirements

Existing solutions

Architecture Coordination Performance

Leases
(decentralized)

Workers coordinate. For
example, use leases to
detect a task failure.

Asynchronous
metadata updates.
Scale by adding more
worker nodes.

Centralized
master

Master records all
metadata updates and
handles all failures.

Can scale through
sharding, but high
overhead due to
synchronous updates.

Outline

1. An overview of distributed futures

2. System requirements and challenges

3. Ownership: Achieving fault tolerance without giving up

performance

4. Evaluation

Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of
a distributed futures application.

f()

f()

driver

add(o1,o2)

o2

o1

1. Task graphs are hierarchical.

2. A distributed future is often
passed within the scope of the
caller.

Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of
a distributed futures application.

1. Task graphs are hierarchical.

Insight: By leveraging the structure of distributed futures applications,
we can decentralize without requiring expensive coordination.

2. A distributed future is often
passed within the scope of the
caller.

f()

f()

add(o1,o2)

o2

o1

driver

Our approach: Ownership

Insight: By leveraging the structure of distributed futures applications,
we can decentralize without requiring expensive coordination.

Architecture Failure handling Performance

Ownership:
The worker that

calls a task owns
the returned

distributed future.

Each worker is a
“centralized master” for
the objects that it owns.

No additional writes on
the critical path of task
execution. Scaling
through nested
function calls.

Ownership: Challenges

● Failure recovery

○ Recovering a lost worker

○ Recovering a lost owner

● Garbage collection and memory safety

● Handling first-class distributed futures, i.e. distributed futures that
leave the caller’s scope

Ownership: Challenges

● Failure recovery

○ Recovering a lost worker

○ Recovering a lost owner

● Garbage collection and memory safety

● Handling first-class distributed futures, i.e. distributed futures that
leave the caller’s scope

→ Check out the paper for more details!

Node 3

Object
Store

Worker

Task scheduling

Node 2

Object
Store

Worker

Node 1

Worker

Obj Task Val Loc

C Y

A

XB

A

Obj Task Val Loc

Y C(X)

Obj Task Val Loc

X B()

Node 3

Object
Store

Worker

Task scheduling

Node 2

Object
Store

Worker

Node 1

Worker

Obj Task Val Loc

X B()

Y C(X)

A

CX Y

A

B

B

2

A task’s pending location is written locally at the owner.

N21

Node 3

Object
Store

Worker

Distributed memory management

Node 2

Object
Store

Worker

Node 1

Worker

Obj Task Val Loc

X B()

Y C(X)

A B

X: N24

X

3

C Y

A

XB

*X N25

Owner tracks locations of objects stored in
distributed memory.

Node 2

Object
Store X

Worker

Node 3

Object
Store

Worker

Task scheduling with dependencies

Node 1

Worker

Obj Task Val Loc

X B() *X N2

Y C(X)

A

X YB C

A

Obj O.

X W1

C

N3

Node 2

Object
Store X

Worker

Node 3

Object
Store

Worker

Worker failure

Node 1

Worker

Obj Task Val Loc

X B() *X N2

Y C(X) N3

A C
Obj O.

X W1

B Y

A

X C

Reference holders only need to
check whether the owner is alive.

Node 3

Object
Store

Worker
C

Obj O.

X W1

Worker recovery

Node 4

Object
Store

Worker

Owner coordinates lineage reconstruction.
Node 1

Worker

Obj Task Val Loc

X B() *X N2

Y C(X) N3

A B

*X N4

B Y

A

X C

Node 2

Object
Store X

Worker

Node 3

Object
Store

Worker

Owner failure

Node 1

Worker

Obj Task Val Loc

X B() *X N2

Y C(X) N3

A C
Obj O.

X W1

B Y

A

X C

Node 2

Object
Store

Worker

Node 3

Object
Store

Worker

Owner recovery

C
Obj O.

X W1

B Y

A

X C

References
fate-share with the
object’s owner.

X

Node 2

Object
Store

Worker

Node 3

Object
Store

Worker

Owner recovery

C
Obj O.

X W1

References
fate-share with the
object’s owner.

X

CX YB

AA’s owner

Node 2

Object
Store

Worker

Node 3

Object
Store

Worker

Owner recovery
CX YB

AA’s owner

References
fate-share with the
object’s owner.

Node 2

Object
Store

Worker

Node 3

Object
Store

Worker

Owner recovery

Node 4

Worker

Obj Task Val Loc

A

Leveraging the application’s hierarchical
structure: the owner of A recovers A.

CX YB

AA’s owner

Obj Task Val Loc

X B()

Y C(X)

Outline

1. An overview of distributed futures

2. System requirements and challenges

3. Ownership: Achieving fault tolerance without giving up

performance

4. Evaluation

Evaluation: Online video processing

frame3

.
.
.

transform’transform

frame0

Decode Flow Cumulative
Sum

Smooth Sink

Invocation

Legend

Task (RPC)

1. Tasks in the milliseconds

2. Complex data dependencies

3. Pipelined parallelism

State dependency frame1

frame2

Evaluation: Online video processing (60 videos)

Centralized = Ray modified with writes to a centralized
metadata store

Evaluation: Online video processing (60 videos)

Latency with ownership is lower because each video
has a different owner.

Evaluation: Online video processing with failures

Recovery when the owner is intact, with lineage
reconstruction.

Evaluation: Online video processing with failures

Recovery from owner failure using application-level
checkpoints to bound re-execution.

Li
ve

 in
pu

t v
id

eo
Stabilized video

https://docs.google.com/file/d/1UBxww8ar6ZQ_9qKErzQddoSeXjAZnvY4/preview

Conclusion

Key insight: Decentralize system operations according to the

application structure.

Ownership: A decentralized system for distributed futures that

achieves transparent recovery and automatic memory management.

Enables data-intensive applications with fine-grained tasks.

github.com/stephanie-wang/ownership-nsdi2021-artifact
github.com/ray-project/ray
Email: swang@cs.berkeley.edu

https://github.com/stephanie-wang/ownership-nsdi2021-artifact
https://github.com/ray-project/ray/

