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The need for distributed memory in RPC



The success of RPC

● RPC is used in virtually all distributed 
applications.

● Why is it so successful?

○ Simple semantics: all request/response 
values are copied → no shared state

Apache 
Thrift

○ Highly efficient implementations

○ Interoperability between RPC 
applications
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The limitations of RPC: Pass-by-value
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Load balancer

Raw references

Servers

Pass-by-value RPC

Optimizing data movement at the application level
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Application-level references 
(“raw” references)
● Combine an existing RPC 

system with an existing 
key-value store

● Application functions call 
put/get on keys to 
store/retrieve values



Scheduler + Mem mgt
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Optimizing data movement in specialized frameworks
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A single “application”

● With no common foundation like RPC, data exchange must be addressed for 
every pair of applications or frameworks

● Stitching together applications often results in redundant copies of data and 
wrangling domain-specific data formats

Why we need interoperability in data-intensive applications

C

Microservices (RPC)

A B

E i ii

Data processing 
(Apache Spark)

 

1 2 3

Distributed training 
(Distributed TF)



A single “application”

● With no common foundation like RPC, data exchange must be addressed for 
every pair of applications or frameworks

● Stitching together applications often results in redundant copies of data and 
wrangling domain-specific data formats

Why we need interoperability in data-intensive applications

C

Microservices (RPC)

A B

E i ii

Data processing 
(Apache Spark)

 

1 2 3

Distributed training 
(Distributed TF)



Problem: RPC for data-intensive applications

How would we re-design RPC for data-intensive applications? We want to:

1. Build applications like data processing directly on an RPC-like system, to 
enable interoperability.

2. Factor out automatic memory management to a common system, to 
reduce duplicated work and application burden.



Solution: Pass-by-reference RPC

1. Extend RPC with a shared address space.

→ But doesn’t a shared address space make RPC semantics more complex?

2. Make all values immutable, to preserve RPC’s original semantics.

3. Introduce references as a first-class primitive in the RPC system.

→ RPC system is aware of references, including creation/destruction 
operations, request arguments passed by reference, etc.
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First-class references for automatic 
memory management



A pass-by-reference RPC API

f.remote(Ref r) → Ref

Invoke f.
Passes the argument by reference.
Returns a Ref that also acts as a future (a pointer to the eventual reply).



Why first-class references?
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Memory management operations

1. Allocation: Where to allocate a value?

2. Reclamation: When to deallocate a value?

3. Data movement: When/where to move a value?

4. Memory pressure: When memory is limited, ensure progress.



Allocation: Where to allocate a value?
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Application does not need to say where 
to put a key (key-value store decides 
where).

Application does not need to say where 
to put a value (scheduler chooses 
function placement).



Reclamation: When to deallocate a value?
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??? System implements distributed garbage 
collection.



Data movement: When and where to move a value?
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Key-value store can reduce some data 
movement, but the load balancer has no 
visibility into which keys will be 
requested.

Scheduler can optimize movement in the 
object store because each request’s 
dependencies are visible. Examples:
● Data locality
● Pipelining I/O and compute



Memory pressure: Ensuring progress when memory is limited
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Too many requests fetching too-large 
values concurrently can trigger OS 
out-of-memory handling

Scheduler can control memory usage by 
examining each request’s dependencies.



Why first-class references?

Enable automatic memory management:

● System is aware of all reference creation and destruction

→ memory safety and liveness

● System has visibility into each RPC’s dependencies

→ optimizations in data movement and memory pressure



Conclusion

Data-intensive applications need a common system to enable interoperability 
and a common system for automatic distributed memory management.

We believe that pass-by-reference RPC is the right answer:

distributed memory + immutable data + first-class references

Check out the paper for information on:

● Pass-by-reference RPC in the wild (Ray and other systems)
● Application use cases
● Future challenges


