
In Reference to RPC: It’s Time to
Add Distributed Memory

Stephanie Wang, Ben Hindman, Ion Stoica

The need for distributed memory in RPC

The success of RPC

● RPC is used in virtually all distributed
applications.

● Why is it so successful?

○ Simple semantics: all request/response
values are copied → no shared state

Apache
Thrift

○ Highly efficient implementations

○ Interoperability between RPC
applications

Driver Worker 1 Worker 2

The limitations of RPC: Pass-by-value

a=f()
a

b=f()
b

c=add(
 a,b)c

ba

Expensive data movement

Program:

 a = f()

 b = f()

 c = add(a, b)

The limitations of RPC: Pass-by-value

Driver Worker 1 Worker 2

b=f()

a=f()

c=add(
 a,b)

a

b

c

ba

Pass by value Pass by reference

Driver Worker 1 Worker 2

a=f()

c=add(
 a,b)a

*a

*cc

b=f()
*b

Load balancer

Raw references

Servers

Pass-by-value RPC

Optimizing data movement at the application level

 data

Load balancer

 client request

Distributed
key-value store

key

+ Simple memory
management

- Expensive data
movement

+ Less data movement
- Manual memory

management

Application-level references
(“raw” references)
● Combine an existing RPC

system with an existing
key-value store

● Application functions call
put/get on keys to
store/retrieve values

Scheduler + Mem mgt

Custom distributed
object store

Specialized frameworks

+ Less data movement
+ Automatic memory

management

Optimizing data movement in specialized frameworks

Load balancer

Raw references

Servers

Pass-by-value RPC

 data

Load balancer

 client request

Distributed
key-value store

key

+ Simple memory
management

- Expensive data
movement

+ Less data movement
- Manual memory

management

 client

+ Interoperability

+ Interoperability - Interoperability

A single “application”

● With no common foundation like RPC, data exchange must be addressed for
every pair of applications or frameworks

● Stitching together applications often results in redundant copies of data and
wrangling domain-specific data formats

Why we need interoperability in data-intensive applications

C

Microservices (RPC)

A B

E i ii

Data processing
(Apache Spark)

1 2 3

Distributed training
(Distributed TF)

A single “application”

● With no common foundation like RPC, data exchange must be addressed for
every pair of applications or frameworks

● Stitching together applications often results in redundant copies of data and
wrangling domain-specific data formats

Why we need interoperability in data-intensive applications

C

Microservices (RPC)

A B

E i ii

Data processing
(Apache Spark)

1 2 3

Distributed training
(Distributed TF)

Problem: RPC for data-intensive applications

How would we re-design RPC for data-intensive applications? We want to:

1. Build applications like data processing directly on an RPC-like system, to
enable interoperability.

2. Factor out automatic memory management to a common system, to
reduce duplicated work and application burden.

Solution: Pass-by-reference RPC

1. Extend RPC with a shared address space.

→ But doesn’t a shared address space make RPC semantics more complex?

2. Make all values immutable, to preserve RPC’s original semantics.

3. Introduce references as a first-class primitive in the RPC system.

→ RPC system is aware of references, including creation/destruction
operations, request arguments passed by reference, etc.

Distributed object store

Executors

Scheduler + Mem Mgt

First-class references
(system-level)

Solution: Pass-by-reference RPC

cache

Load balancer

Raw references (app-level)

Servers

Pass-by-value RPC

 data

Load balancer

 client request

Distributed
key-value store

key

+ Simple memory
management

- Expensive data
movement

+ Interoperability

+ Less data movement
- Manual memory

management
+ Interoperability

+ Less data movement
+ Automatic memory

management
+ Interoperability

First-class references for automatic
memory management

A pass-by-reference RPC API

f.remote(Ref r) → Ref

Invoke f.
Passes the argument by reference.
Returns a Ref that also acts as a future (a pointer to the eventual reply).

Why first-class references?

Executors

Scheduler + Mem Mgt

Distributed object store
cache

First-class references

Load balancer

Raw references

Servers

Pass-by-value RPC

 data

Load balancer

 client request

Distributed
key-value store

key

+ Simple memory
management

+ Interoperability
- Expensive data

movement

+ Less data movement
+ Interoperability
- Manual memory

management

+ Less data movement
+ Automatic memory

management
+ Interoperability

vs.

Memory management operations

1. Allocation: Where to allocate a value?

2. Reclamation: When to deallocate a value?

3. Data movement: When/where to move a value?

4. Memory pressure: When memory is limited, ensure progress.

Allocation: Where to allocate a value?

Executors

Scheduler + Mem Mgt

Distributed object store
cache

First-class references

Load balancer

Distributed
key-value store

Raw references

key

Application does not need to say where
to put a key (key-value store decides
where).

Application does not need to say where
to put a value (scheduler chooses
function placement).

Reclamation: When to deallocate a value?

Executors

Scheduler + Mem Mgt

Distributed object store
cache

First-class references

Load balancer

Distributed
key-value store

Raw references

key

??? System implements distributed garbage
collection.

Data movement: When and where to move a value?

Executors

Scheduler + Mem Mgt

Distributed object store
cache

First-class references

Load balancer

Distributed
key-value store

Raw references

key

Key-value store can reduce some data
movement, but the load balancer has no
visibility into which keys will be
requested.

Scheduler can optimize movement in the
object store because each request’s
dependencies are visible. Examples:
● Data locality
● Pipelining I/O and compute

Memory pressure: Ensuring progress when memory is limited

Executors

Scheduler + Mem Mgt

Distributed object store
cache

First-class references

Load balancer

Distributed
key-value store

Raw references

key

Too many requests fetching too-large
values concurrently can trigger OS
out-of-memory handling

Scheduler can control memory usage by
examining each request’s dependencies.

Why first-class references?

Enable automatic memory management:

● System is aware of all reference creation and destruction

→ memory safety and liveness

● System has visibility into each RPC’s dependencies

→ optimizations in data movement and memory pressure

Conclusion

Data-intensive applications need a common system to enable interoperability
and a common system for automatic distributed memory management.

We believe that pass-by-reference RPC is the right answer:

distributed memory + immutable data + first-class references

Check out the paper for information on:

● Pass-by-reference RPC in the wild (Ray and other systems)
● Application use cases
● Future challenges

