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ABSTRACT
Low latency is increasingly critical for modern workloads, to the ex-

tent that compute functions are explicitly scheduled to be co-located

with their in-memory object stores for faster access. However, the

traditional object store architecture mandates that clients inter-

act with the server via inter-process communication (IPC). This

poses a significant performance bottleneck for low-latency work-

loads. Meanwhile, in many important emerging AI workloads, such

as parallel tree search and reinforcement learning, all the worker

processes accessing the object store belong to a single user.

We design Lightning, an in-memory object store rearchitected

for modern, low-latency workloads in a single-user, multi-process

setting. Lightning departs from the traditional design by adopting a

shared memory model, enabling clients to directly access the object

store without IPC boundary. Instead, client isolation is achieved

by a novel integration of Intel Memory Protect Keys (MPK) hard-

ware, transaction logging, and formal verification. Our evaluations

show that Lightning outperforms state-of-the-art in-memory object

stores by up to 9.0x on five standard NoSQL workloads and up to

4.5x in scaling up a Python tree search program. Lightning improves

the throughput of a popular reinforcement learning framework that

uses an in-memory object store for data sharing by up to 40%.

PVLDB Reference Format:
Danyang Zhuo, Kaiyuan Zhang, Zhuohan Li, Siyuan Zhuang, Stephanie

Wang, Ang Chen, Ion Stoica. Rearchitecting In-Memory Object Stores for

Low Latency . PVLDB, 15(3): 555 - 568, 2022.

doi:10.14778/3494124.3494138

1 INTRODUCTION
In-memory object stores (e.g., Redis [60], Memcached [49]) are a

critical component in data analytics systems. They allow different

processes to share state via a simple key-value interface. Tradi-

tionally, the in-memory object store is hosted in remote nodes and

accessed by clients over the network. This enables ease of state
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sharding for scalability and replication for fault tolerance. Achiev-

ing high performance of in-memory object stores is important for

many applications [21, 22, 44].

Emerging workloads, however, are creating a high pressure on

the performance of in-memory object stores. To eliminate network

overhead, clients are increasingly scheduled to be co-located with

their state. This is especially true for emerging AI workloads that

a) require intensive communication between multiple workers, and

b) are hosted in a single trust domain instead of multi-tenant cloud.

For example, in a popular reinforcement learning library RLlib [45],

each worker is a separate process running a series of simulations,

and a trainer process collects gradients from and pushes updated

model to worker processes through an in-memory object store. As

long as the reinforcement learning job can fit into a single machine,

the underlying framework scheduler [51] will co-locate all these

processes. This transforms what used to be network communica-

tions to machine-local data transfers for faster training. Instead

of using network sockets to communicate with the remote store,

many object stores [49, 60] use IPC (e.g., UNIX domain sockets)

for low-latency local accesses (Figure 1a). More recent systems

(e.g., Arrow [4], Ray [51]) go one step further to satisfy low latency

demands—clients only incur IPC overhead for metadata operations
(e.g., object creation, lookup, deletion); the object data itself is made

available by shared memory to avoid copy overhead. Sharing data

objects directly via shared memory between worker processes is a

suitable choice for many emerging AI workloads. Worker processes

belong to the same user, and they are trusted to be non-malicious.

As such, shared memory improves performance due to less data

copying overheads; it also reduces memory footprint as multiple

workers can share data copies.

However, we found that as latency requirements become more

stringent, this latter design choice starts to show its bottlenecks.

This is because IPC overheads become a performance bottleneck

when metadata operations are frequent. Consider the same rein-

forcement learning example: in each training round, each worker

process fetches the current round of the model, runs simulation, and

creates a new object that contains the current gradient. The trainer

process fetches the gradients, computes the model for the next

round, and creates a new object that contains the updated model.

The latency of metadata operations via IPC (i.e., object lookup and

object creation) ends up dominating the training speed. (See §6.4.)
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Figure 1: Architecture of In-memory object stores. Existing
in-memory object stores (e.g., Redis, Memcached, Plasma)
employ the (a) client-server model. Lightning uses the (b)
shared-memory model.

The need for IPC stems from the client-server model inherent

to today’s object stores, as servers mediate most client accesses.

Our benchmark shows that, for fetching a 1 KB object in Redis, at

least 14 µs out of the 18 µs total latency is due to IPC. (See §2.2.)

Even though these workloads run in a single-user setting, the client-

server model is important for isolating buggy clients from causing

catastrophic failures, e.g., accidentally corrupting object metadata.

For instance, RL workers heavily rely on third-party libraries for

game simulation; these libraries are trusted to be non-malicious, but

bugs are always common and may accidentally modify arbitrary

memory addresses or lead to a crash.

This raises an important question: To better serve these emerging

workloads,How should we design in-memory object stores to
achieve low latency in a single-user, multi-process setting?

In this paper, we explore the feasibility and potential perfor-

mance gains of a completely different design: rearchitecting the

object store to completely remove IPC overheads on client opera-

tions by performing both metadata and data operations via shared

memory (Figure 1b). This will enable all the client operations to

proceed at memory speed.

Although this design point holds much promise for performance,

there are several technical challenges that we need to address. In

particular, we want to provide isolation across clients using shared
memory without changing the underlying OS kernel. Our goal is to
protect against a buggy client from stomping on other clients’ meta-

data accidentally. More precisely, we ensure two types of isolation

guarantees: (1) metadata integrity in that clients cannot modify the

object store’s key data structures, and (2) metadata consistency in

that a crashed client will not leave the object store in an incoherent

state. Moreover, the new design must allow for the same set of

typical services, such as access control, garbage collection, object

subscription, flexible object schema, in today’s object stores.

To this end, we design and implement Lightning, a low-latency

in-memory object store that represents a drastic departure from

today’s designs in its use of a shared-memory model for both data

and metadata. Clients directly create and fetch objects on the shared

memory through a trusted library. We leverage two techniques to

ensure fault isolation. For metadata integrity, we leverage recent

hardware advances in modern CPUs—Intel Memory Protection

Keys (MPK) in particular—which enforce memory isolation within

the same address space with low overhead [32]. Lightning uses

MPK to ensure that a client thread can access the metadata of the

object store only when the thread is executing functions inside our

trusted libraries. The metadata of the object store will thus not be

corrupted if a client thread misbehaves (i.e., modifying arbitrary

memory addresses) when running outside our trusted library. For

metadata consistency, Lightning tolerates crash failures via undo

logging to provide transactional semantics. When a client thread

enters a function in the trusted library, the client thread writes

an undo log. If a client process crashes, the daemon process of

the object store wakes up, parses the log of the crashed process,

and rolls back the object store to a consistent state that is free of

metadata corruption. This allows other clients to continue accessing

the object store. (See §4.2.)

To achieve high assurance, Lightning’s isolation mechanism

is formally verified to ensure correctness. Crash consistency is

a very important property and correct implementation of crash

consistency is difficult in Lightning and other data store, such as file

systems [2, 10, 63] and databases [29]. Verifying crash consistency

is a fundamental solution to this problem and has been studied

extensively in file systems. However, since an object store, such

as Lightning, uses unbounded data structures—e.g., linked lists

to implement dynamic memory allocators—applying exhaustive

symbolic execution as in file system verification [63] leads to state

space explosion. To address this, we separate the verification goal

into two steps.We first formally verify the undo log implementation

that enforces a transactional abstraction on the shared memory,

and then verify that the object store uses MPK and the undo log

correctly. This separation allows us to verify the isolation properties

with proof automation. (See §4.3.)

We also develop a set of typical object store services on top of

our object store. We classify object store services into two cate-

gories: control-plane services and data-plane services. We imple-

ment control-plane services (e.g., access control) in the daemon

process, and we implement the data-plane services (e.g., garbage

collection, object subscription, flexible object schema) using client-

to-client coordination. (See §4.4.)

Our evaluations show that Lightning outperforms state-of-the-

art in-memory object stores, Redis and Plasma, by up to 9.0x for five

YCSB workloads [74]. We also use Lightning to scale up a Python

Monte Carlo tree search program, and it performs up to 4.5x faster

than if Redis is used. Finally, we port a popular reinforcement

learning framework, RLlib [45], that originally uses Plasma as its

underlying in-memory object store on top of Lightning. Lightning

speeds up its workloads by up to 40%. Lightning’s key limitations

include: Lightning does not work for applications that already use

MPK for other purposes; when a client crashes, other clients have

to wait for the daemon process to clean up the metadata on the

shared memory; and Lightning only provides integrity for metadata

but not for data when a client misbehaves. (See §7.)

This paper makes the following contributions:

• Lightning, a redesign of in-memory object store architectures

for modern, low-latency workloads using shared memory.

• Metadata protection mechanisms that ensure integrity via

the use of Intel MPK hardware and metadata consistency

using undo logging.

• Averifier that checks the isolation property of our in-memory

object store.

• We demonstrate Lightning’s benefits on a set of applica-

tions, including five standard NoSQL workloads, a Python



tree search program, and a popular reinforcement learning

framework.

2 BACKGROUND
We first describe the use cases and software architecture of in-

memory object stores. We then benchmark the latency for existing

in-memory object stores, using Redis [60] and Plasma [56] as two

classic design points.

2.1 In-Memory Object Stores
In-memory object stores are a key component for multiprocess

applications to share data. Many emerging applications [4, 51] opt

to use multiple processes to isolate their workers instead of spawn-

ing one thread for each worker in the same address space. This

improves software modularity compared to multithreading, and it

enables easy fault tolerance [72] and dynamic task invocation (i.e.,

instantiating new workers from binaries) [79]. Instead of creating

many direct process-to-process communication channels, differ-

ent processes of the same application communicate via a central

object store, e.g., Redis, Memcached, or Plasma. Processes share

data by creating and fetching objects in the store. This has become

a standard programming paradigm due to its simplicity. All the

worker processes belong to the same user and are thus trusted to

be non-malicious.

Most existing in-memory object stores employ a client-server

model, which has a server process to (1) manage object memory

and (2) enable object lookup. A typical in-memory object store uses

state-of-the-art memory allocators [19, 37] and uses HashMaps

to map object identifiers or keys to object buffers. Clients create

explicit communication channels to the interactive process in order

to issue operations. Unix Domain Socket is often used for fast local

client accesses. All the client requests are serialized through the

socket, so the server process executes the client requests in order.

There are two options for a client process to access or modify

an object buffer. In most traditional designs, such as Redis and

Memcached, object buffers transfer through IPC directly. To create

an object, the object buffer is sent from the client process to the

server. To fetch an object, the object buffer is sent back from the

server process to the client process.

In order to further reduce latency, recent designs go one step

further: object buffers are in shared memory, and pointer addresses

go through IPC. In Plasma, for instance, to create an object, a client

process asks the server process to Create an object buffer with a

given size through IPC. Plasma’s server process then allocates a

buffer on the shared memory and sends the pointer to the buffer

back to the client. After the client process fills the object buffer, it

calls a Seal function through IPC to allow object lookup for the

newly created object. To fetch an object, the client process asks

the server process for the pointer to the object buffer through IPC,

and the client process directly accesses the object buffer in shared

memory. In the second mode, the client process has to communicate

with the server process through IPC twice (one for Create and one
for Seal) to fully create an object. Placing objects directly in shared

memory is appealing because it eliminates the need to copy data

object through IPC. In addition, the total memory footprint reduces

because multiple worker processes can share a single copy of data.
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Figure 2: Redis’s and Plasma’s client operation latency. The
two Plasma curves overlap on (b). Error bars show the stan-
dard deviations.

2.2 Key bottleneck: IPC Latency
Although designs like Plasma eliminate data-plane operation IPC

overhead, control-plane operations still incur IPC cost. Unfortu-

nately, modernworkloads have very stringent latency requirements,

making IPC overhead a dominating cost.

We benchmark the latency of Redis and Plasma on an AWS m5-

16xlarge virtual machine running Linux 4.15. It has 32 physical cores

(Intel Xeon Platinum 8175M CPU, 2.5 GHz) with 256GB memory.

We wrote a latency test tool in C++ for Redis and Plasma. The tool

creates, fetches, and deletes objects continuously and outputs the

average latency for every 100 operations. The tool uses Redis’s

and Plasma’s default C++ client libraries [33, 57] to access them.

For both Redis and Plasma, we configure the tool to issue requests

through Unix Domain Sockets. We benchmark the latency for “Put”,

i.e., object creation, and “Get”, i.e., object fetching.

Redis and Plasma are only two instances of in-memory object

stores, and in the future, more optimizations can be applied to

reduce their latency. To understand the lowest possible latency for

these design points, we consider an optimal model for in-memory

object store that process requests over IPC. In the optimal model,

the latency of “Put” is the round trip latency of sending 1 byte

over domain socket plus the latency of memory copy of object size

of data. For “Get”, the optimal latency is the round trip latency

of sending 1 byte over domain socket, assuming data objects are

already in shared memory. Figure 2 shows the result.

Redis almost achieves the best possible performance given its

design of sending object buffer over IPC. When object sizes are

smaller than 2 KB, Redis achieves 18 µs latency for fetching objects.

The round trip time of sending 1-byte message over a Domain

Socket already takes 14 µs. This means that for small objects, client

operations are completely bottlenecked by the latency of IPC.Worse

still, this is an underestimate for IPC’s performance implication

because a typical in-memory object store requires serialization and

deserialization on both the client and the server side in order to

communicate through IPC [1], which can result in an additional

memory copy latency at both the client and the server.

Plasma has better object fetching latency when the object size

is more than 64KB because clients can access the object buffer

through the shared memory. However, Plasma suffers from a fixed

shared memory setup cost, making its latency high for small objects.

Also, because creating an object in Plasma requires communication

through IPC twice, its latency is also high (55 µs). To address this

issue, Plasma has an optimization that allows sending object buffer



over IPC to create an object. This enables creating an object with a

single IPC. We measure its performance and show it in Figure 2a.

It speeds up the object creation by 47-49% for small objects (size <

2 KB). Following Plasma evaluations have this optimization enabled.

Batching is another optimization to reduce the impact of IPC

overheads between the client and the object store server process.

Both Redis and Plasma support batching for object creation and

fetching. However, whether batching can improve throughput highly

depends on application design and application workloads. Batching

cannot reduce client operation latency.

There are certainly many opportunities to optimize Redis and

Plasma to approach the optimal model’s performance. However, a

key question we want to ask in this paper is whether we can build

an in-memory object store that is an order-of-magnitude faster than

this optimal model for fetching objects and creating small objects.

One potential approach is to maintain the same client-server

model and use shared-memory as an IPC channel [3, 8, 35, 39]

between the client and the storage process. However, this would

require active polling on the shared memory to detect and fetch

messages on both ends. This design introduces large amount of

unnecessary CPU overheads (evaluated in Figure 6).

3 OVERVIEW
We design Lightning to be a fast in-memory object store for local

client accesses. We require Lightning to: (1) run at memory speed,
i.e., creation, fetching, and deletion should operate without IPC

overheads (e.g., sending buffers over a domain socket, signals, or

other types of system calls); (2) isolate misbehaving (non-malicious)
clients, i.e., a misbehaving client cannot accidentally corrupt Light-

ning’s metadata to prevent other clients from making progress, leak

memory, or corrupt object lookups; (3) provide a rich set of object
store services, i.e., the object store provides access control, garbage
collection, object subscription, and flexible object schema.

Similar as other in-memory object stores (e.g., Redis [60], Mem-

cached [49], Plasma [56]), Lightning exposes a key-value interface

with API shown in Table 1. Lightning maintains a mapping between

an ObjectID to a Buffer. To create an object, a client calls Create
to create a buffer. The client can modify the buffer and then Seal
the object. Once an object is sealed, other processes are able to

fetch the object through Get, which returns a Buffer. Objects are
also reference counted—a Get increments and a Release decre-

ments the count. When reference count drops to zero, the object

is deleted. Lightning also provides an explicit Delete function to

delete objects directly.

Lightning’s high-level idea is to expose the metadata of an in-

memory object store entirely to the client processes in shared mem-

ory, ensuring memory-speed access from clients to the object store.

On the other hand, the key challenge of this design is to ensure

fault isolation while providing a rich set of object store services.

Figure 3 shows Lightning’s architecture. The object store exposes

its object lookup table and object memory in a shared memory

region with all the clients. In addition, each client shares a per-

client log with the object store. Lightning object store includes a

daemon process that sets up the shared memory and monitors the

liveness of its clients. LightningLib is the user library that client

processes use to access the object store.

Figure 3: Lightning’s architecture. Gray rounded boxes are
in the shared memory. The undo log, object lookup table,
and the state for thememory allocator are protected byMPK.
The client process can access the shared memory through
our trusted library, LightningLib. If a client crashes, Light-
ning’s daemon process fetches the client’s undo log and roll-
backs any modifications in the log to restore the metadata
to a consistent state.

Key challenge: metadata protection. Lightning’s key chal-

lenge is to ensure fault isolation. In particular, we consider three

types of faults: (1) a buggy client that contains one or more mis-

behaving threads that corrupt its memory executing code outside

LightningLib; (2) a thread that crashes in the midst of LightningLib

execution due to another buggy thread in the same process; (3)

LightningLib and the daemon process have bugs so that they do

not enforce isolation correctly. We use Intel MPK, transactional log-

ging, and software verification to address these faults accordingly.

Our guarantee is that the metadata of Lightning has both integrity

(i.e., metadata can only modified by code inside LightningLib) and

consistency (i.e., transactional metadata modifications).

Technique #1: Intel MPK. Without protection, a buggy client

can accidentally modify the metadata of the object store to destroy

its key data structures for memory allocation or object lookup.

Lightning uses MPK as a building block for metadata integrity,

which is available on all Intel CPUs since Skylake. At a high level,

MPK allows a user process to change the permission of a set of

memory pages inside its address space, delivering two benefits

compared to traditional page tables. First, permission changes are

fast. A user process uses a special non-privileged x86 instruction

WRPKRU to change permission, eliminating context switches into

the kernel. Defining the set of pages requires OS support (through

the pkey_mprotect system call), but once a page set is defined,

only one invocation of WRPKRU is enough to change permission

for all the pages in the set. Second, MPK’s protection is at a per-

thread granularity. For a multi-threaded process, even if one thread

has access to a particular page set, other threads may not have

the access to the same page set. Each process can define up to

16 different keys, which is individually mapped to a set of pages.

The permission (i.e., the policy of whether a set of pages is read

only, or read/write, or non-accessible) for the 16 keys is stored

in a per-hyperthread protection key rights register (PKRU). CPU
checks whether a memory access is permitted by MPK and raises

an exception if access is denied. Note that MPK does not provide

control flow integrity. A buggy client can ‘jmp’ to some memory

address that accidentally decoded to a valid MPK operation to

disable MPK protection. This problem is outside our threat model,

and it can be addressed using existing methods [70].



Table 1: Lightning API.

Core (Memory-Speed) Interfaces: Description
Buffer buffer← Create(ObjectID id, size_t size) Create an object with a given object id and an object size.

Seal(ObjectID id) Seal an object to make the object accessible through its object id.

Buffer buffer← Get(ObjectID id) Get an object buffer from an object id.

Release(ObjectID id) Decrement the reference count. If reference count is 0, delete the object.

Delete(ObjectID id) Delete an object with a given object id.

MPut, MGet, MUpdate Described in §4.4.

Auxiliary Functions: Description
Connect(Password password) Connect to the object store with a password.

Subscribe(Object id) Wait until the object with the given object id is created.

Exit() Disconnect from the object store..

We use Intel MPK to ensure Lightning’s metadata integrity, by

allocating metadata and data in different page sets. Our assumption

is that a client does not use MPK’s functionality and thus will not

circumvent MPK’s memory permits. When a client thread is exe-

cuting functions outside LightningLib, the set of pages containing

the metadata is set to be inaccessible using MPK. When the thread

calls into LightningLib, LightningLib immediately switches page

permissions to make the metadata accessible. When the thread

leaves the function in LightningLib, LightningLib switches the per-

mission back. This mechanism ensures that when a client thread

misbehaves, it cannot corrupt Lightning’s metadata.

Technique #2: Transaction logging. A buggy client thread

can also cause other threads in the same process to crash. This

means we need to provide transactional semantics for metadata

changes even when a thread crashed in the middle of executing a

function in LightningLib. When a client wants to modify the object

store’s state, it has to record the old states in an undo log. If the

client crashes in the middle of an operation (e.g., Create, Delete),
the daemon process of the object store collects the client’s log and

replays the log in the reverse order to rollback partial operations.

To avoid concurrent modification to the object store’s state, we

use a single spinlock to serialize client operations. Our approach

guarantees that if a client crashes in the middle of an operation, the

state of the object store rolls back to the state before the operation.

The spinlock is protected by MPK (part of the store’s metadata),

so a misbehaving thread cannot hold it. If a thread crashes while

holding the lock, the daemon process will undo the operation too.

Technique #3: Verification. We formally verify that Light-

ningLib and the daemon process can enforce client isolation cor-

rectly. We cannot use full-program symbolic execution [52, 53, 63,

75, 78] to verify Lightning’s crash-fault isolation, because our ob-

ject store has a buddy memory allocator and a HashMap which

involve unbounded data structures (e.g., linked list). This leads to

state-space explosion for symbolic execution. We also choose not

to use interactive theorem provers over the entire implementa-

tion [10, 11, 13, 27, 80] because it requires excessive manual effort.

Instead, we verify the isolation property in two steps. First, we

implement and verify an undo log implementation that enforces a

transaction abstraction on the shared memory. This abstraction re-

quires object store to explicitly initialize a transaction, issue writes

to the shared memory, and then complete the transaction. Access

to metadata is enabled during this transaction through MPK, and

all the modifications to the metadata in shared memory go through

this abstraction. The undo log can always rollback an incomplete

transaction given the number of writes to the shared memory does

not overflow the size of the log. Second, we verify that every possi-

ble code path for every operation (e.g., Create, Seal, Delete) has
only one transaction and the maximum possible number of writes

to the shared memory in the transaction is bounded by the size of

the log through a combination of static and dynamic analysis.

4 THE LIGHTNING OBJECT STORE
4.1 Basic Functionalities
Lightning has two basic building blocks. A memory allocator and a

HashMap for object lookup. The state of the memory allocator and

the HashMap are in the shared memory, allowing direct access from

client processes. We have a single spinlock to protect the memory

allocator and the HashMap’s metadata.

Because objects have varying sizes, we implement a buddy allo-

cator in which we store a set of linked lists of free memory blocks.

Memory blocks in the same linked list have the same block size.

Our HashMap for object lookup employs a simple open hashing

scheme. Lightning hashes ObjectID into one of 65536 hash slots,

where each hash slot is a linked list.

To Create an object, the client (1) acquires the lock, (2) Malloc
the object buffer on the shared memory, (3) puts the object metadata

into the HashMap, (4) releases the lock, and (5) returns the buffer

to the client. After the client process fills in the buffer, the client

calls Seal, which (1) acquires the lock, (2) modifies the metadata

of the object to mark the object as sealed, and (3) releases the lock.

Only sealed objects can be queried through Get. To fetch an object,

a client calls Get to get the pointer of the buffer in shared memory.

4.2 Isolating Faulty Clients
Lightning leverages MPK hardware and logging to ensure isolation.

We store Lightning’s metadata in a fixed number of memory pages

and use a single MPK key to map to those pages. The permission to

those pages is set to be INACCESSIBLE by default. During a client

operation that needs to modify the metadata, LightningLib switches

the permission to be READ/WRITE. Note that this permission is at

per-thread granularity: even if one thread is modifying the meta-

data, other threads of the same process that are not calling into

LightningLib still cannot modify the metadata.



To tolerate a client thread crashing in the middle of executing

a function in LightningLib, Lightning employs logging to ensure

crash fault isolation. Naïvely, we can use redo logging [59] in the

same way as how modern file systems and databases ensure crash

consistency. In redo logging, all updates to the shared memory in an

operation (e.g., Create) are written to the log first, which are then

applied “atomically” to the shared memory when the operation

finishes. Such an approach can incur significant overheads for our

in-memory object store. Reading modified state requires searching

through the log first and then in shared memory, because the log

contains the latest states—this incurs high latency. File systems and

databases do not have this issue because they make use of page

cache for fetching most updated disk states and thus do not need

to read the log on the disk.

Therefore, we use undo logging instead to make reads faster.

All modifications to the object store state directly go to the shared

memory, and the LightningLib records the old states in the client

log. Each log entry has 128 bits: 64 bits for the memory address

offset relative to the starting address of the shared memory and the

other 64 bits for old value at that memory offset. When Lightning’s

daemon process detects a client crashing in the middle of an opera-

tion, it writes the old values to the corresponding shared memory

offsets in the reverse order to rollback the object store state to the

beginning of the crashed operation. After that, the daemon process

releases the global spinlock that the crashed client holds.

We use a simple logging interface. An operation first calls init_tx
to instantiate a log that is shared between the object store and

the client. init_tx also switches MPK permissions to allow the

client thread to access Lightning’s metadata. The client thread

can then call log_write(shared_memory_offset offset, value
new_value) to modify the state of the shared memory. This func-

tion first writes the old value of the shared memory at a certain

offset to the log and then writes the new value to the given offset

on the shared memory. At the end of an operation, the operation

calls end_tx to destroy the log and switch access permission off for

Lightning’s metadata.

4.3 Verification of Isolation Property
We want to have high confidence in the design and implementation

of our isolation mechanism. If there are bugs, a misbehaving client

can leave the object store in an inconsistent state, preventing other

clients from accessing their objects. We prove the following two

properties on all the client operations:

Theorem 1. At the end of every client operation, MPK permission
for the metadata is set to be INACCESSIBLE (Integrity).

Theorem 2. After a crash in a client operation, Lightning’s recov-
ery procedure will result in a metadata state where either all or none
of the writes are included (Consistency).

One option is to use exhaustive symbolic execution for verifica-

tion [53, 63] as it requires less manual effort compared with using

interactive theorem provers like Coq [15]. However, Theorem 2

cannot be directly verified using symbolic execution, since object

store data structures (e.g., linked list) lead to path explosion during

symbolic execution. Consequently, we break down Theorem 2 into

the following three theorems and verify them independently.

Log (Dafny)

Store (C++)

Verifier

LLVM IR

Lightning executable

OK.
Log does not provide crash 
fault isolation. (Theorem 3)

Log overflows. (Theorem 5)

Unprotected shared memory 
access. (Theorem 4)

Log (C++) Compiler

Figure 4: Lightning’s verification workflow. Solid rectangu-
lar boxes are Lightning’s source code, and dotted ones are in-
termediate representations and the executable of Lightning.
The verifier checks for Theorem 3 on the log implementa-
tion in Dafny and check for Theorem 4 and Theorem 5 on
the LLVM IR of the object store.

Theorem 3. For up to 𝑁 write operations, the logging API guar-
antees that all writes to the shared memory between begin_tx and
end_tx are atomically applied to the shared memory.

Theorem 4. All write operations to the shared memory are within
the range of begin_tx and end_tx. And each client operation’s im-
plementation only uses the logging API to access the shared memory.

Theorem 5. The number of write operations in each handler is
less than 𝑁 .

Figure 4 shows the architecture of our verifier. The high-level

workflow is that Theorem 3 ensures the correctness of our log

implementation, and Theorem 4 and Theorem 5 guarantee that the

log is used correctly in the object store. Note that Theorem 4 implies

Theorem 1 because we switch off permissions to the metadata

during end_tx.
We use Dafny [43] to verify the correctness of the log imple-

mentation (Theorem 3). To verify the implementation, we need to

explore all possible crash states (i.e., the state of the shared memory

when the client crashes). To model all possible crash states during

the execution, we use a “countdown” counter, which denotes the

number of shared memory and log accesses a client can execute be-

fore it crashes. Every time the log implementation accesses shared

memory or the log memory, the counter decrements by one. When

the counter reaches zero, it means the client operation crashes

at this instruction, and all subsequent updates to shared memory

and log are thus silently ignored. Therefore, when initializing the

counter with a positive symbolic value, we model arbitrary crash

behavior during the execution. With this crash model, we verify

that the following invariants always hold:

Invariant 1. If a memory location exists in the log, its first ap-
pearance of the log records the original value of the memory location
when begin_tx is called.

Invariant 2. If a memory location never appears in the log, its
content is the same as when begin_tx is called.

We then verify that running the recovery routine, which tra-

verses the log in the reverse order and performs rollback on each

entry, on a state where both of the invariants hold, results in same

memory state as that at the beginning of the transaction. Note that

we only verify the correctness of the logging API up to a certain

amount of write operations (𝑁 operations), which is bounded by the

size of the log itself. Combining with Theorem 5, it is sufficient to



show that the logging API provides correct transactional semantics

when used by the client operations.

In order to verify Theorem 4 and Theorem 5, we perform sym-

bolic execution over all the client operations in Lightning. During

the execution, we maintain a symbolic counter that tracks the

number of log writes issued, the implementation of logging API is

replaced with an abstract model that increments the counter by one.

To further mitigate path explosion, symbolic execution of the oper-

ations is performed in a modular fashion. Instead of inlining all the

code when encountering a function call, for a function that contains

unbounded loops or recursion, we create a profile for the function

manually. The profile includes two pieces of information: the upper

bound on the number of log write operations and a predicate on

the execution state. Having a state predicate helps us reason about

functions whose number of log operations depends on other states

such as the calling arguments. For example, a function that contains

a loop whose number of iterations depends on its argument cannot

be verified without specifying the bound of arguments. When a

function 𝐹 is invoked during the symbolic execution of another

function 𝐺 , the verifier checks if the predicate of 𝐹 holds on the

current symbolic state, if so, it uses the upper bound from the profile

of 𝐹 instead of symbolically executing the function implementation.

This modular method makes it possible to verify Theorem 5 with-

out experiencing path explosion. During the verification of each

function, the verifier also performs pointer analysis to make sure

that access to shared memory is always performed through the

logging API. This property, combined with the fact that begin_tx
and end_tx are only called once at the beginning and the end of

each handler (the verifier also enforces this during the symbolic

execution), is sufficient to prove Theorem 4.

Our trusted computing base (TCB) for verification includes the

decomposition from Theorem 2 into Theorem 3, Theorem 4 and

Theorem 5, the code compilation process for both Dafny and LLVM

IR, the manual translation from Dafny to C++ for our log imple-

mentation, and the correctness of all the verification tools we use

(Dafny and our verifier). The function profiles are not trusted, be-

cause their correctness are checked by our verifier on a per-function

basis using symbolic execution.

4.4 Object Store Services
A typical in-memory object store provides a set of object store

services that are critical for security, memory efficiency, and con-

venience. The research question here is whether they can co-exist

with our shared-memory model for in-memory object store.

We classify the services into two categories: control-plane and

data-plane services. Control-plane services are activated when a

client connects or exits, and data-plane services on client opera-

tions. For control-plane services, Lightning implements them in the

daemon process. The daemon process intercepts the initial connec-

tion and exit of clients. Lightning employs a client-to-client model

for data-plane services. We implement the following four typical

object services in Lightning.

Control-plane: Access control. Lightning enforces access con-
trol to prevent unauthorized clients from accessing the object store.

Clients cannot directly open shared memory through the POSIX

API, i.e., shm_open, to get access to the object store. Lightning

requires a password for connection establishment. The daemon pro-

cess accepts connections via a Unix Domain Socket, where clients

provide their passwords and the daemon process verifies. Upon a

successful connection, LightningLib receives a file descriptor from

the daemon process and mmaps it to get access to the shared mem-

ory of the object store.

Control- and Data-plane: Garbage collection. If no client

crashes, reference counting on a per-object level ensures zero mem-

ory leak; this effectively collects garbage in the data plane. In the

control-plane, when a client exits (either intentionally or due to

bugs), rolling back the object store’s state to be a consistent one is

not enough. For example, a client can create an object then crash,

and thus no other processes know the existence of the object, and

the object still occupies the memory of the object store. This means

when a client crashes, we need to know what objects are currently

referenced in the client process in order to decrement their refer-

ence counts.

In the client’s log, we dedicate a fraction of its space to persist

across different operations. This space contains a HashMap that

records the current opened objects, i.e., the client Create or Get the
object without Release it. When the client exits intentionally, the

client Release all these objects. If the client crashes, the daemon

process rollbacks the state of the object store and then Release all

the opened objects for the client. Modification to this HashMap is

crash-safe because it is also protected by our undo logs (§4.2).

Data-plane: Object subscription. To prevent a client from

busy-waiting on an object that has not been created or sealed yet,

an in-memory object store usually provides an object subscription

mechanism.

Lightning provides a Subscribe API to wait until an object is

ready (i.e., created and sealed). When a client calls Subscribe,
it creates a per-object semaphore (sem_init) and waits on the

semaphore (sem_wait). If the semaphore is already created by other

clients, the client directly waits on the created semaphore. In this

way, the subscribed client is put to sleep by the operating system.

When a client calls Seal to allow other clients to access the object,

the client post (sem_post) to the semaphores to unblock all the sub-

scribes for the object and then delete the semaphore (sem_destroy).
If an object is not subscribed to, none of the semaphore mechanism

is triggered.

Data-plane: Flexible object schema. Flexible object schema

enables structured data in the object store. Lightning supports user-

defined object schema by allowing an object to contain a field-to-

value mapping. We provide three additional API for object schema,

which are similar to Redis’s HGet and HSet interface:

(1) MPut(object_id, fields, values)

(2) MGet(object_id, fields)

(3) MUpdate(object_id, fields, values)

When a user creates an object with schema using MPut, Lightning
serializes the field to value mapping to a customized object format

that allows fast lookups through fields. A user can use MGet to

select the set of fields to query and MUpdate specific fields of an

object. This feature allows Lightning to support NoSQL workloads,

such as YCSB [74].
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Figure 5: Latency comparison of Redis, Plasma, and Lightning. Error bars show the standard deviations.

5 IMPLEMENTATION
The core functions of Lightning are implemented using around 1800

lines of C++ and 550 lines of Dafny. We manually translate the log

implementation in Dafny to C++ in order to generate executable.We

implement clients (i.e., LightningLib) for C++, Java, and Python

to integrate with our client applications (e.g., YCSB [74], RLlib [45],

mctspy [48]). We use Java Native Interface to implement the Java

client, and Cython for the Python client.

The verifier for Lightning is implemented using around 4500

lines of C++. The verifier generates the LLVM [42] intermediate

representation using clang, and it accesses the abstract syntax tree
of the object store using C++ LLVM library.

Share memory is created using Unix Shared Memory Objects

(i.e., shm_open, shm_unlink). File descriptors that point to the

shared memory are passed between the daemon process and clients

through sendmsg.
The daemon process wakes up every second to check the liveness

of all the clients. It also detects client crashes bymonitoringwhether

a client’s process identifier (PID) is alive in the operating system.

Linux generates PIDs in a monotonically increasing manner, so we

assume there is no PID collision. If a client crashes, the daemon

process initiates the crash recovery and garbage collection.

6 EVALUATION
We first perform a set of microbenchmarks, and then evaluate Light-

ning on five YCSB workloads [74], followed by two AI applications

(Monte Carlo tree search [48], and RLLib [45]). Our testbed setup

is the same as §2.2.

6.1 Microbenchmarks
Latency. As Figure 5 shows, Lightning has significantly lower la-

tency than Redis and Plasma. Lightning does not have an explicit

Put API. For Lightning, Put means the client calls Create, mem-

ory copies data into Lightning, and then calls Seal. For creating
small (< 2 KB) objects, Lightning’s latency is 3 µs, much faster than

Redis (19 µs) and Plasma (30 µs). For large objects, all systems have

similar performance, as memory copy from the client to the object

store dominates. For fetching small objects (< 2KB), the latency

of Lightning is 360 ns, nearly two orders of magnitude faster than

Redis (18 µs) and Plasma (31 µs). Redis’s Get latency grows with the

object size because Redis transfers objects via IPC; both Plasma and

Lightning support zero-copy Get so their latency stays constant.

For object deletion, Lightning is consistently 15-22x faster than both

Redis and Plasma. We also compare Lightning with our optimal
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Figure 6: Lightning’s overall throughput and CPU utiliza-
tion compared with Redis and Plasma with various num-
bers of client processes. The overall throughput is calculated
by adding up the average throughput of each client process
over time. Error bars in (b) show the standard deviations.

performance model for IPC-based object stores as an upper-bound

of their achievable performance (§2.2). Here we assume the best la-

tency of Delete for IPC-based object store is the round trip latency
of sending 1 byte over domain socket. Lightning outperforms this

performance model by at least one order of magnitude for creating

small objects, fetching objects, and deleting objects. Lightning can

achieve this level of performance because the client operations

do not need to trigger OS kernel anymore, and they are applied

directly by LightningLib on the shared memory. The additional

latency due to switching MPK permissions is negligible, which is

consistent with the literature [55]. We also implement a version

of Lightning that uses shared memory as an IPC channel, where

both clients and the server process are busy polling on the shared

memory to receive messages. Data objects are still in shared mem-

ory. Messages include client requests and responses that contain

pointer to objects in shared memory. We use SMC (shared memory

channel) to represent this prototype. SMC is significantly faster

than both Redis and Plasma, because it also eliminates IPC over-

heads. However, the busy polling has synchronization overheads

between threads (polling on shared memory addresses). Lightning

achieves similar performance as SMC. Inserting to and polling from

the shared memory channel has overheads in SMC, and ensuring

memory ordering in writing the undo log using memory fences has

overheads in Lightning.

Throughput. Lightning has high throughput. We use our tool

to test the throughput of Lightning, Redis, and Plasma on 1KB

objects (a typical object size in YCSBworkloads). We call “put”, “get”,

and then “delete” an object as an iteration, and we test how many



Read Update Read Update Read Read Insert Read Update Read-Modify-Write0
20
40
60
80

100
120

La
te

nc
y 

(u
s) YCSB-A YCSB-B YCSB-C YCSB-D YCSB-F

Redis Plasma Lightning

(a) number of YCSB clients = 1

Read Update Read Update Read Read Insert Read Update Read-Modify-Write0
20
40
60
80

100
120

La
te

nc
y 

(u
s) YCSB-A YCSB-B YCSB-C YCSB-D YCSB-F

(b) number of YCSB clients = 2

Read Update Read Update Read Read Insert Read Update Read-Modify-Write0
20
40
60
80

100
120
140

La
te

nc
y 

(u
s) YCSB-A YCSB-B YCSB-C YCSB-D YCSB-F

(c) number of YCSB clients = 4

Read Update Read Update Read Read Insert Read Update Read-Modify-Write0
50

100
150
200
250
300

La
te

nc
y 

(u
s) YCSB-A YCSB-B YCSB-C YCSB-D YCSB-F

(d) number of YCSB clients = 8

Figure 7: Lightning’s latency on various YCSB workloads. Error bars show standard deviations.

iterations clients can achieve. Figure 6a shows the results. Lightning

can achieve between 330K and 456K iterations per second. Note

here Lightning achieves the highest throughput when there is only

one client process. This is because multiple clients have to compete

for the spinlock to modify the state of the object store. The lock

contention on the shared memory increases client operation latency.

In comparison, the maximum throughputs of Redis and Plasma are

44K and 25K iterations per second, respectively. Lightning has 1.3x

throughput compared to SMC, because the latter has additional

CPU overheads for busy polling.

CPU overhead. Lightning significantly reduces CPU overhead.

We measure and break down the CPU utilization using mpstat for

four clients to continuously “put”, “get”, and then “delete” an object.

Figure 6b shows the result. Redis, Plasma, and Lightning use a simi-

lar amount of CPU cores: 1.8, 2.0, and 1.1 virtual cores, respectively.

However, their throughputs are 40K, 25K, and 330K, respectively,

so Lightning is 14x more CPU efficient. For Redis and Plasma, the

majority of the CPU cycles are spent in the operating system kernel

for IPC. SMC requires exactly 5 virtual cores because 4 clients and

1 server each needs to do busy polling on the shared memory. SMC

can maintain throughput at 249K. This means Lightning is 6x CPU

efficient compared to SMC.

Recovery. The speed for recovery depends on the number of

open objects. Figure 8a shows the latency for the recovery process

for a crashed client with open objects. When the number of opened
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Figure 8: Lightning’s latency for (a) crash recovery and (2) ob-
ject subscription. Error bars show the standard deviations.

object is small (< 100 objects), the recovery takes 5ms. When the

number of opened objects is large, the garbage collection latency is

substantial. If the daemon process garbage collects 10000 objects,

the entire recovery process is 9ms.

Sealing subscribed objects. The speed of Seal for an object

depends on the number of subscribers. Figure 8b shows the latency

of object creation when an object has subscribers. When there

is no subscriber, the latency is around 3µs. When there is a sin-

gle subscriber the latency immediately increases to 8 µs. This is

because semaphore operations are system calls. When there are

more subscribers, the latency increases linearly because in Linux’s
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Figure 9: Lightning’s throughput on five standard YCSB
workloads. Error bars show the standard deviations.

semaphore API, sem_post only unblocks a single waiting client. To
unblock 𝑁 subscribers, Seal has to call sem_post 𝑁 times.

Verification. The verification time has two parts: (1) the Dafny

verification of the undo log’s implementation and the combination

of static and dynamic analysis of the rest of Lightning’s source

in C++. Verification of the correctness of undo log (Theorem 3)

takes 16 seconds. Checking for Theorem 4 and Theorem 5 takes 13

minutes and 35 seconds.

6.2 YCSB Workloads
We evaluate on Lightning with five YCSB workloads [74]. YCSB

is implemented in Java, so here we use our Java client to access

Lightning. YCSB-A is an update-heavy workload, YCSB-B is read-

mostly, YCSB-C is read-only, YCSB-D is read-latest, and YCSB-F is a

read-modify-write workload. Lightning cannot support YCSB-E be-

cause Lightning does not support range queries on ObjectID. Both
Redis and Lightning have native support for flexible object schema,

so they support YCSB naturally. Plasma does not support flexible

object schema, so similar to how YCSB works on memcached, we

use Jackson [36] to serialize field-values pairs into a JSON format

and then put into an object. In addition, Plasma does not support

object update, so we do not evaluate YCSB-A, YCSB-B, and YCSB-F

on Plasma when there is more than one client.
1

Lightning delivers low latency on YCSB workloads. Figure 7

shows the latency comparison with Redis and Plasma. Overall,

Lightning improves latency by 1.2-9.0x for different settings, com-

pared with the best of Plasma and Redis for each setting. On a single

YCSB client for YCSB-C, Lightning achieves 1 µs read latency com-

pared with 33 µs for Redis and 12 µs for Plasma. Plasma’s latency is

faster than our microbenchmark. This is because YSCB workloads

have locality, and Plasma’s client caches object memory addresses

in its client library, so subsequent Get on the same key is just a

1
When there is a single client, we can implement object update via deleting the

existing object and creating a new one. However, for multiple clients, because another

client can fetch the object between object deletion and creation, this can result in an

object-not-found error.
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Figure 10: Throughput for Monte Carlo Tree Search. Error
bars show the standard deviations.
client-side lookup. Redis and Lightning do not have this optimiza-

tion. Lightning performs consistently well on read, update, insert,

or read-modify-write across all the measured YCSB workloads.

Lightning significantly improves YCSB workloads’ throughput.

Figure 9 shows Lightning’s throughput in comparison with Redis

and Plasma for various numbers of YCSB clients. Lightning achieves

180K, 279K, 289K, 227K, and 149K operations per-second on YCSB-

A, YCSB-B, YCSB-C, YCSB-D,and YCSB-F, respectively. Overall,

Lightning improves throughput by up to 7.4x for different settings,

compared with the best of Plasma and Redis for each setting. Plasma

has higher performance than Redis because (1) object data has to

be transferred over a socket from the YCSB client to Redis, and (2)

Plasma’s client caches object memory addresses. Lightning has the

best performance when there is only one client because multiple

clients can result in lock contention. For example, on the YCSB-C

workload, the throughput of Lightning drops from 289K operations

per second for a single client to 209K operations per second for 8

clients. On YCSB-C, Plasma actually outperforms Lightning when

there are 8 clients. This is because Plasma caches object memory

addresses on the client, where each object fetch operation requires

the client to grab the global lock in Lightning.

6.3 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) [16] is a heuristic tree search

algorithm, which is proved to be successful in gameplay [24, 28, 65,

66]. For a given input gameplay state, MCTS finds the best move

out of a set of moves by repetitively selecting and evaluating search

tree nodes and expanding the search tree from the selected nodes.

While the vast majority of the AI algorithms are implemented

with Python, most MCTS implementations use low-level program-

ming languages like C++ [68]. The reason is that to parallelize

MCTS, different parallel workers need to synchronize and update

the tree states frequently, which is previously only feasible with

threads and shared memory. However, the Python Global Inter-

preter Lock (GIL) makes it impossible to use threads to scale Python

programs and the IPC costs make multi-processing infeasible.

Lightning enables fast object sharing formulti-processing Python

applications. We scale a single-thread Python MCTS library mct-

spy [48] using Lightning with less than 40 lines of code modification

compared to the single-thread version.We also scale up the program

with Redis as a baseline.
2

We show the search throughput for Tic-tac-toe in Figure 10. On

16 cores, the search throughput using Lightning as the backend is up

to 4.5x higher than the search throughput using Redis. From 2 cores

2
It is difficult to implement parallel MCTS with Plasma because Plasma does not

support object update.
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Figure 11: RLLib throughput with Plasma and Lightning with different batch sizes and number of workers. Error bars show
the standard deviations.

to 16 cores (4x increase), Lightning scales the search throughput

up by 2.7x, while Redis only achieves 1.6x. This is because with

Redis, the workers have to communicate with the object store with

high-latency IPCs in order to access the search tree.

6.4 Reinforcement Learning
Modern reinforcement learning (RL) algorithms involve deep nest-

ing of irregular distributed computation patterns. The goal of RL

algorithms is to learn a policy, which maps the states of an environ-

ment to the actions. To learn the policy, the algorithm needs to train

the neural networks while interacting with the environments (e.g.

a game simulator). Frequent interaction with the unstable external

environments makes fault isolation crucial for RL algorithm imple-

mentation. The natural heterogeneity of RL algorithms leads to the

development of a number of distributed frameworks. One repre-

sentative distributed framework, Ray [51], is a general task-based

distributed system designed for RL workloads and uses Plasma [56]

to share objects across worker processes. RLlib [45] further pro-

vides abstractions and implementations for various concrete RL

algorithms on top of Ray.

We port RLlib on top of Lightning and evaluate its performance

with the asynchronous advantage actor critic (A3C) algorithm [50],

one of the most widely-used RL algorithms. In A3C, a set of worker

processes continuously evaluate a policy network in the external

environments and share the resulted gradients with a single trainer

process using the object store. Upon receiving the gradients from

any worker, the trainer process performs gradient updates on its

copy of the policy network, and share the updated network with

the worker.

We follow the setting from the experiments in the original pa-

per [50]. We use the convolutional neural network in [50] as the

policy network and the Arcade Learning Environment [7] wrapped

by OpenAI Gym [9] as the environment for the algorithm, which

provides a simulator for Atari 2600 games. We evaluate the per-

formance by the training throughput of the trainer (i.e. number of

samples processed per second). Since Atari games do not differ in

simulation time, so without loss of generality, we choose Pong as

our environment for evaluation. We evaluate RLlib with various

numbers of total processes and various batch sizes. Specifically, we

test both Lightning and original Plasma implementation with 4, 8,

16, and 32 total processes and batch sizes of 5, 10, 20, 40, and 80.

Figure 11 shows the result. Note that smaller batch size means

more frequent synchronization between the trainer process and

the workers, and thus communication takes a larger fraction of the

total running time. As shown in the figure, when the number of

processes is small, Lightning outperforms Plasma by a small frac-

tion, but when the number of processes increases, the performance

gaps between Plasma and Lightning become larger. Note that the

performance of Plasma decreases while the number of processes

increases for small batch sizes, the reason is that in this case the IPC

overheads of the Plasma store dominates the training throughput

and the overheads increase with the number of total processes. For

Lightning, since there is no IPC overhead, the processing speed of

the trainer process is the only bottleneck, and thus for small batch

sizes, the training throughput for Lightning is roughly the same

when the number of processes increases. Comparing the largest

training throughput in terms of different numbers of processes

between the two stores, Lightning outperforms Plasma by 11% (for

batch size 5) to 40% (for batch size 40).

7 DISCUSSION
Isolation model. Lightning adopts common security assumptions

in systems of this kind (e.g., Plasma). It ensures fault isolation for

buggy clients, but not for actively malicious clients. Such systems

target a single-user environment:, where the user spawns multiple

worker processes that use the object store. Clients may use WRPKRU
to switch MPK permissions, but the assumption is that a client

process that passes object store access control (§4.4) is not malicious.

Future work might generalize systems like Lightning and Plasma

to multi-tenant cloud settings. This requires strengthening the

use of MPK by static analysis and binary rewriting as done in

existing work goal [32, 70]. These enhancements would check that

a client never uses MPK primitives to bypass access control outside

LightningLib. Lightning provides metadata integrity but not for

object data, similar as Plasma [56]. Data integrity can be handled by

including object hash values in the metadata region and checking

before use. If the client already uses MPK for other purposes, then

slight application modification may be required—but this is not a

common case for object store workloads.

Latency during client crashes. One fundamental drawback

of using Lightning is that, when a client crashes, the rest of the

clients have to wait for the daemon process to wake up and clean

up the metadata. The latency for the rest of the clients depends on

how frequently daemon process wakes up. We currently set the

frequency to be once per second, but this can be optimized further

with the tradeoff of incurring higher CPU overheads.

Scalability. Lightning serializes client operations using a lock.
This prevents multiple clients from operating on the metadata at

the same time. We can scale up Lightning by instantiating multiple

instances of Lightning, partition the key space using consistent



hashing, and use one instance of Lightning to manage one partition

of the key space. But in practice, the current workloads do not

require such scaling, as a single thread is already sufficient. We

note that our baselines for performance comparison, Redis and

Plasma, are both single-threaded applications too.

Remote clients. Lightning significantly outperforms today’s

in-memory object stores for workloads that co-locate clients and

state for low latency. Remote accesses are outside our workload

model and can fall back to regular solutions. Lightning does not

change how such accesses would happen: the object store can have

a set of server threads that mediate operations from remote clients.

For such accesses, network overhead is the dominating latency.

8 RELATEDWORK
In-memory object stores. In-memory object stores (e.g., Redis [60],

Plasma [56], Memcached [49]) are critical infrastructure and have

been extensively optimized in the past. Existing work has focused

on efficient indexing [14, 22], concurrency [46], speeding up ac-

cesses from remote clients [21], replication [76], cache efficiency [71],

hardware acceleration [38, 44, 77], tail latency [18], and fault tol-

erance [54]. Our focus is on low-latency access from local client

processes. Our architecture is similar to WhiteDB [73] that both

expose their states in shared memory. However, WhiteDB does not

provide fault isolation between client processes. Lightning is a dras-

tic redesign of traditional in-memory object store that eliminates

client IPC overheads while guaranteeing client isolation. To the

best of our knowledge, Lightning is the first in-memory object store

that guarantees provable client isolation without IPC overheads

due to kernel intervention.

Isolation hardware. Researchers have used Intel SGX [5, 6, 12,

41, 69], ARM TrustedZone [23, 34] to provide isolation for security.

Intel MPK is a new hardware feature starting from the Skylake

generation, and it has been used to improve the security for several

applications. ZoFS [20] is a persistent memory file system that uses

MPK to provide isolation between the application and the library to

access persistent memory. Poseidon [17] is a memory allocator for

persistent memory that uses MPK to protect allocator’s metadata.

Underbridge [26] and Sung et. al [67] bring memory isolation to

microkernels and unikernels, respectively. Hodor [32] uses MPK to

build trusted dataplane libraries. Our work is similar to these work

that we also use MPK to build our trusted library. However, our

goal is different: we build a feature-rich in-memory object store

with provable guarantees for metadata protection. We need to deal

with crash failure and formal verification of our isolation prop-

erty. ERIM [70] uses binary analysis and rewriting to prevent MPK

circumvention. Libmpk [55] virtualizes MPK so that applications

can have an unlimited number of virtualized keys. Our paper is

orthogonal to Erim, and we only need to use one key, so we do not

need libmpk.

Transactions. Providing transactional semantics via logging is

well studied in file systems [10, 61, 63], databases [25, 58], and per-

sistent memory [47, 62], where the goal is to tolerate node crashes

by recovering to a consistent state using the log. In contrast, we

provide crash fault isolation: when a client crashes, the in-memory

object store’s state should be consistent, allowing other clients to

keep using the object store. In addition, we deal with misbehav-

ing clients that can corrupt memory. Our software architecture is

similar to RVM [62] and Rio Vista [47], although the latter projects

focus on managing persistent data structures efficiently without

considering misbehaving clients—which we address using logging,

MPK, and verification. Transactional semantics is also achievable us-

ing Intel HTM (Hardware Transactional Memory), although issues

around MPK and verification go beyond what HTM can provide.

Crash safety verification. Crash safety can be verified by (1)

exhaustive symbolic execution [63] or (2) manual interactive veri-

fication [10]. However, neither is appropriate in our problem. Ex-

haustive symbolic execution is infeasible because object stores have

unbounded data structures (e.g., linked lists) for memory allocator

and HashMap. Verified file systems often use bitmaps to allocate

blocks on the disks. In theory, we can use bitmaps to implement a

memory allocator, and symbolic execution would be enough to ver-

ify its correctness. However, using a bitmap for memory allocation

means the time to allocate a memory block is linearly proportional

(in flipping bits in the bitmap) to the number of blocks requested.

This is infeasible in high-performance in-memory object stores

because in-memory object store has to support low-latency object

creation for variable-size objects. Another verification method is to

use interactive theorem proving (e.g., using Coq), but it is prohibi-

tively expensive due to the manual verification effort. Our approach

is most similar to Nickel [64], a framework to verify information

flow control systems, in the breakdown of high-level properties

to a set of verification goals for which proof automation can be

applied. Our approach does not verify other correctness properties

of the object store that existing file system crash-safety verifica-

tion projects are concerned about. Proving these properties may

require manual guidance through annotations [30, 31] or the use

of interactive theorem provers [10, 27, 40].

9 CONCLUSION
We design and implement Lightning, a low-latency in-memory

object store without IPC overheads for single-user multi-process

applications. Lightning allows client processes to directly access

the object store’s data and metadata, and it enforces fault isolation

using Intel MPK hardware, undo logging, and formal verification.

We also implement a rich set of typical object store services in

Lightning. Our evaluations show that Lightning outperforms state-

of-the-art in-memory object stores by to up 9.0x on five standard

NoSQL workloads and up to 4.5x in scaling up a Python tree search

program. Lightning improves the throughput of a popular rein-

forcement learning framework that uses an in-memory object store

for data sharing by up to 40%. Lightning’s source code is available

at https://github.com/danyangz/lightning.
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