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Low latency is increasingly important 
in data processing systems

Data processing is used today in online systems. 
• Stream processing 
• Graph processing 
• Control systems 

Data processing at large scale also requires the 
ability to recover results after a failure.
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Tradeoff between low 
latency and recovery time

Runtime overhead

Recovery 
overhead

Lineage 
stash
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Stream processing example

Select Filter Counter

{
 user_id: …,
 keyword:
  “UCB”,
}

“UCB” +1

state: 1state: 1

Display the number of times “UCB” has been queried.

10s of milliseconds
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{
 user_id: …,
 keyword:
  “Cal”,
}

{
 user_id: …,
 keyword:
  “Beat Stanford”,
}

{
 user_id: …,
 keyword:
  “Go bears”,
}

Stream processing example

Time

Select

Filter

Counter

Select

Filter

Counter

Select

Task

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

: A few to 10s of milliseconds

!5



Counter

Filter

Select 2

Select 1

Stream processing example

Time
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Counter

Filter

Select 2

Select 1

Stream processing example

Time

[“UCB”,
 “UCB”]

+2
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Tradeoff between low 
latency and recovery time

Runtime overhead

Recovery 
overhead

Global 
checkpointing
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Counter

Filter

Select 2

Select 1

Global checkpointing

Time

[“UCB”,
 “UCB”]

+2

[“UCB”, 
 “Bears”]

+1
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Counter

Filter

Global checkpointing

Time

+1
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Select 2

Select 1

+2

Roll back failed process

[“UCB”,
 “UCB”]

[“UCB”, 
 “Bears”]



[“UCB”,
 “UCB”]

[“UCB”, 
 “Bears”]

Counter

Filter

Select 2

Select 1

Global checkpointing

Time

+1+2

Roll back upstream processes
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Counter

Filter

Select 2

Select 1

Global checkpointing

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]
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+1+1

[“UCB”,
 “UCB”]

Counter

Select 2

Select 1

Time

+2

[“UCB”,
 “Bears”]

+2

Global checkpointing

Filter
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+1+1

[“UCB”,
 “UCB”]

Counter

Select 2

Select 1

Time

+2

[“UCB”,
 “Bears”]

+2

Global checkpointing

Must also roll back 
downstream processes

Filter
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[“UCB”,
 “UCB”]

Counter

Select 2

Select 1

Time

[“UCB”,
 “Bears”]

Global checkpointing

Filter

!15



Counter

Filter

Select 2

Select 1

Time

+1

[“UCB”,
 “Bears”]

[“UCB”,
 “UCB”]

Global checkpointing

+2
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Counter

Filter

Select 2

Select 1

Time

+1

[“UCB”]

[“UCB”,
 “Bears”]

Global checkpointing

+2

Take a global checkpoint on some interval 
and do a global rollback on any failure 

 

Low runtime overhead 
High recovery overhead
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Tradeoff between low 
latency and recovery time

Runtime overhead

Recovery 
overhead

Logging

Global 
checkpointing

!18



Counter

Filter

Select 2

Select 1

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1
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Counter

Filter

Select 2

Select 1

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Record messages
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Counter

Filter

Select 2

Select 1

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Record nondeterministic 
execution order
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Select 2

Counter

Filter

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 1
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Counter

Filter

Logging

Time

+1
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[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

Select 2

Select 1



Counter

Filter

Logging

Time

[“UCB”,
 “Bears”]

+1

[“UCB”,
 “UCB”]

+2

Select 2

Select 1
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[“UCB”,
 “Bears”]



+1

Select 2

Counter

Filter

Logging

Time

[“UCB”,
 “Bears”]

[“UCB”,
 “UCB”]

+2

Select 1
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Select 2

Counter

Filter

Logging

Time

[“UCB”,
 “Bears”]

+1

[“UCB”,
 “UCB”]

+2

Select 1
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Counter

Filter

Logging

Time

[“UCB”]

+1

[“UCB”,
 “Bears”]

+2

Select 2

Select 1
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Record additional information between 
checkpoints so that only failed processes 

need to be rolled back 
 

Low recovery overhead 
High runtime overhead



Select 1

Counter

Filter

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 2

Log the lineage to reduce 
the amount logged
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Select 1

Counter

Filter

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 2

Pointers to data

Log the lineage to reduce 
the amount logged
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Select 1

Counter

Filter

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 2

Pointers to data

Log the lineage to reduce 
the amount logged

Task descriptions
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Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous 
round-trip to remote storage

FilterSelect 2Select 1 Counter
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Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous 
round-trip to remote storage

FilterSelect 2Select 1 Counter
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Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous 
round-trip to remote storage

FilterSelect 2Select 1 Counter
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Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous 
round-trip to remote storage

FilterSelect 2Select 1 Counter
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Task latency depends on global storage latency 

Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous 
round-trip to remote storage

Scheduling delay / task >= 1RTT + 1RPC

FilterSelect 2Select 1 Counter
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Lineage stash contribution

How do we achieve both low runtime and low 
recovery overhead for fine-grained data 
processing applications?

Solution: Asynchronously log the lineage 
off the critical path of execution. 

Lineage reconstruction to reduce amount logged 
Causal logging to log nondeterminism
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FilterSelect 2Select 1 Counter

Global Lineage Storage

Lineage stash architecture

Persistent key-value store.
Sharded for horizontal scalability

Replicated for 
durability.
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Lineage stash architecture

Global Lineage Storage

FilterSelect 2Select 1 Counter
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Global Lineage Storage

Lineage stash architecture

Object storeObject storeObject storeObject store

Local, volatile cache for application objects.

FilterSelect 2Select 1 Counter
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Global Lineage Storage

Lineage stash architecture

Local, volatile cache for lineage.

Object storeObject storeObject storeObject store

FilterSelect 2Select 1 Counter

Stash Stash Stash Stash
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FilterSelect 2Select 1 Counter

Global Lineage StorageGlobal Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Stash Stash Stash Stash

Lineage stash: Logging the 
lineage, asynchronously

Scheduling delay / task = 1RTT + 1RPC 
Task latency independent of global storage latency
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FilterSelect 2Select 1 Counter

Global Lineage StorageGlobal Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Stash Stash Stash Stash

Lineage stash: Logging the 
lineage, asynchronously

Scheduling delay / task = 1RTT + 1RPC 
Task latency independent of global storage latency
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FilterSelect 2Select 1 Counter

Global Lineage StorageGlobal Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Stash Stash Stash Stash

Lineage stash: Logging the 
lineage, asynchronously

Scheduling delay / task = 1RTT + 1RPC 
Task latency independent of global storage latency
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage

+2
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage

+2
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[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage

+2
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Uncommitted 
Lineage

(3) Forward uncommitted lineage.



[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the 
lineage, asynchronously

Global Lineage Storage

(3) Forward uncommitted lineage.

+2
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Uncommitted 
Lineage



CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage
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CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage
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CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage
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CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage
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Global Lineage Storage

Stash Stash

Lineage stash recovery

Global Lineage Storage

(1) Flush 
uncommitted 
lineage

CounterFilter
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Global Lineage Storage

Stash Stash

Lineage stash recovery

Global Lineage Storage

(2) Ack 
recovering 
process

CounterFilter
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Global Lineage Storage

Stash Stash

Lineage stash recovery

Global Lineage Storage

(3) Retrieve 
and replay  
lineage

CounterFilter
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Tradeoff between low 
latency and recovery time

Runtime overhead

Recovery 
overhead

Logging

Global 
checkpointing

Lineage 
stash
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Latency without failures
BetterStreaming wordcount: 

-32 m5.xlarge nodes 
-30s checkpoint interval

!61



Latency without failures

Global checkpointing

Better
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Latency without failures

Logging the lineage 
synchronously

Better
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Latency without failures
Better

Logging the lineage 
asynchronously
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(1
00

k 
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rd

s/
s)

Time since start (s)

Throughput during recovery

Flink

WriteFirst

Lineage 
stash

Streaming wordcount: 
- 32 m5.xlarge nodes 
- 30s checkpoint interval
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Th
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hp

ut



(1
00

k 
re

co
rd

s/
s)

Time since start (s)

Global 
checkpoint

Throughput during recovery

Flink

WriteFirst

Lineage 
stash

Streaming wordcount: 
- 32 m5.xlarge nodes 
- 30s checkpoint interval
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(1
00

k 
re

co
rd

s/
s)

Time since start (s)

Node 
failure

Throughput during recovery
Ch

ec
kp

oi
nt Flink


WriteFirst

Lineage 
stash

Streaming wordcount: 
- 32 m5.xlarge nodes 
- 30s checkpoint interval
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Global rollback and replay

Th
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hp

ut



(1
00

k 
re

co
rd

s/
s)

Time since start (s)

Throughput during recovery

Flink

WriteFirst

Lineage 
stash

Streaming wordcount: 
- 32 m5.xlarge nodes 
- 30s checkpoint interval

Ch
ec

kp
oi

nt
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Process new records since failure

Th
ro

ug
hp

ut



(1
00

k 
re

co
rd

s/
s)

Time since start (s)

Throughput during recovery

Flink

WriteFirst

Lineage 
stashCh

ec
kp

oi
nt
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00
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Time since start (s)

Partial rollback

Throughput during recovery

Flink

WriteFirst

Lineage 
stashCh

ec
kp

oi
nt
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Latency during recovery
M

ed
ia

n 
la

te
nc

y 
(m

s)

Flink

WriteFirst

Lineage 
stash

Record timestamp since start (s)

Streaming wordcount: 
- 32 m5.xlarge nodes 
- 30s checkpoint interval
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See the paper (or email me: swang@berkeley.edu) for: 
• Discussion and evaluation of other applications 
• Nondeterminism in data processing applications 
• Protocols for flushing and recovering the stash 

Key idea: Asynchronously log the lineage and forward 
uncommitted lineage to guarantee recovery correctness. 

Low latency during execution and low downtime after a 
failure for large-scale decentralized data processing 
applications.

Lineage Stash
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