
Lineage Stash: Fault
Tolerance Off the Critical

Path
Stephanie Wang, John Liagouris, Robert Nishihara,

Philipp Moritz, Ujval Misra, Alexey Tumanov, Ion Stoica

�1

Low latency is increasingly important
in data processing systems

Data processing is used today in online systems.
• Stream processing
• Graph processing
• Control systems

Data processing at large scale also requires the
ability to recover results after a failure.

!2

Tradeoff between low
latency and recovery time

Runtime overhead

Recovery
overhead

Lineage
stash

!3

Stream processing example

Select Filter Counter

{
 user_id: …,
 keyword:
 “UCB”,
}

“UCB” +1

state: 1state: 1

Display the number of times “UCB” has been queried.

10s of milliseconds
!4

{
 user_id: …,
 keyword:
 “Cal”,
}

{
 user_id: …,
 keyword:
 “Beat Stanford”,
}

{
 user_id: …,
 keyword:
 “Go bears”,
}

Stream processing example

Time

Select

Filter

Counter

Select

Filter

Counter

Select

Task

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

: A few to 10s of milliseconds

!5

Counter

Filter

Select 2

Select 1

Stream processing example

Time
!6

Counter

Filter

Select 2

Select 1

Stream processing example

Time

[“UCB”,
 “UCB”]

+2

!7

Tradeoff between low
latency and recovery time

Runtime overhead

Recovery
overhead

Global
checkpointing

!8

Counter

Filter

Select 2

Select 1

Global checkpointing

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

!9

Counter

Filter

Global checkpointing

Time

+1

!10

Select 2

Select 1

+2

Roll back failed process

[“UCB”,
 “UCB”]

[“UCB”,
 “Bears”]

[“UCB”,
 “UCB”]

[“UCB”,
 “Bears”]

Counter

Filter

Select 2

Select 1

Global checkpointing

Time

+1+2

Roll back upstream processes

!11

Counter

Filter

Select 2

Select 1

Global checkpointing

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

!12

+1+1

[“UCB”,
 “UCB”]

Counter

Select 2

Select 1

Time

+2

[“UCB”,
 “Bears”]

+2

Global checkpointing

Filter

!13

+1+1

[“UCB”,
 “UCB”]

Counter

Select 2

Select 1

Time

+2

[“UCB”,
 “Bears”]

+2

Global checkpointing

Must also roll back
downstream processes

Filter

!14

[“UCB”,
 “UCB”]

Counter

Select 2

Select 1

Time

[“UCB”,
 “Bears”]

Global checkpointing

Filter

!15

Counter

Filter

Select 2

Select 1

Time

+1

[“UCB”,
 “Bears”]

[“UCB”,
 “UCB”]

Global checkpointing

+2

!16

Counter

Filter

Select 2

Select 1

Time

+1

[“UCB”]

[“UCB”,
 “Bears”]

Global checkpointing

+2

Take a global checkpoint on some interval
and do a global rollback on any failure

 

Low runtime overhead
High recovery overhead

!17

Tradeoff between low
latency and recovery time

Runtime overhead

Recovery
overhead

Logging

Global
checkpointing

!18

Counter

Filter

Select 2

Select 1

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

!19

Counter

Filter

Select 2

Select 1

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Record messages

!20

Counter

Filter

Select 2

Select 1

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Record nondeterministic
execution order

!21

Select 2

Counter

Filter

Logging

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 1

!22

Counter

Filter

Logging

Time

+1

!23

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

Select 2

Select 1

Counter

Filter

Logging

Time

[“UCB”,
 “Bears”]

+1

[“UCB”,
 “UCB”]

+2

Select 2

Select 1

!24

[“UCB”,
 “Bears”]

+1

Select 2

Counter

Filter

Logging

Time

[“UCB”,
 “Bears”]

[“UCB”,
 “UCB”]

+2

Select 1

!25

Select 2

Counter

Filter

Logging

Time

[“UCB”,
 “Bears”]

+1

[“UCB”,
 “UCB”]

+2

Select 1

!26

Counter

Filter

Logging

Time

[“UCB”]

+1

[“UCB”,
 “Bears”]

+2

Select 2

Select 1

!27

Record additional information between
checkpoints so that only failed processes

need to be rolled back
 

Low recovery overhead
High runtime overhead

Select 1

Counter

Filter

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 2

Log the lineage to reduce
the amount logged

!28

Select 1

Counter

Filter

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 2

Pointers to data

Log the lineage to reduce
the amount logged

!29

Select 1

Counter

Filter

Time

[“UCB”,
 “UCB”]

+2

[“UCB”,
 “Bears”]

+1

Select 2

Pointers to data

Log the lineage to reduce
the amount logged

Task descriptions

!30

Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous
round-trip to remote storage

FilterSelect 2Select 1 Counter

!31

Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous
round-trip to remote storage

FilterSelect 2Select 1 Counter

!32

Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous
round-trip to remote storage

FilterSelect 2Select 1 Counter

!33

Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous
round-trip to remote storage

FilterSelect 2Select 1 Counter

!34

Task latency depends on global storage latency

Global Lineage StorageGlobal Lineage Storage

But logging still requires a synchronous
round-trip to remote storage

Scheduling delay / task >= 1RTT + 1RPC

FilterSelect 2Select 1 Counter

!35

Lineage stash contribution

How do we achieve both low runtime and low
recovery overhead for fine-grained data
processing applications?

Solution: Asynchronously log the lineage
off the critical path of execution.

Lineage reconstruction to reduce amount logged
Causal logging to log nondeterminism

!36

FilterSelect 2Select 1 Counter

Global Lineage Storage

Lineage stash architecture

Persistent key-value store.
Sharded for horizontal scalability

Replicated for
durability.

!37

Lineage stash architecture

Global Lineage Storage

FilterSelect 2Select 1 Counter

!38

Global Lineage Storage

Lineage stash architecture

Object storeObject storeObject storeObject store

Local, volatile cache for application objects.

FilterSelect 2Select 1 Counter

!39

Global Lineage Storage

Lineage stash architecture

Local, volatile cache for lineage.

Object storeObject storeObject storeObject store

FilterSelect 2Select 1 Counter

Stash Stash Stash Stash

!40

FilterSelect 2Select 1 Counter

Global Lineage StorageGlobal Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Stash Stash Stash Stash

Lineage stash: Logging the
lineage, asynchronously

Scheduling delay / task = 1RTT + 1RPC
Task latency independent of global storage latency

!41

FilterSelect 2Select 1 Counter

Global Lineage StorageGlobal Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Stash Stash Stash Stash

Lineage stash: Logging the
lineage, asynchronously

Scheduling delay / task = 1RTT + 1RPC
Task latency independent of global storage latency

!42

FilterSelect 2Select 1 Counter

Global Lineage StorageGlobal Lineage Storage

(1) Write lineage to local, volatile lineage stash.
(2) Asynchronously flush to remote storage.

Stash Stash Stash Stash

Lineage stash: Logging the
lineage, asynchronously

Scheduling delay / task = 1RTT + 1RPC
Task latency independent of global storage latency

!43

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

!44

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

!45

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

!46

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

!47

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

!48

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

+2

!49

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

+2

!50

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

+2

!51

Uncommitted
Lineage

(3) Forward uncommitted lineage.

[“UCB”,
 “UCB”]

[“Go bears”,
 “Beat Stanford”,
 “Cal”]

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash: Logging the
lineage, asynchronously

Global Lineage Storage

(3) Forward uncommitted lineage.

+2

!52

Uncommitted
Lineage

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage

!53

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage

!54

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage

!55

CounterFilter

Stash Stash

Global Lineage Storage

Lineage stash recovery

Global Lineage Storage

!56

Global Lineage Storage

Stash Stash

Lineage stash recovery

Global Lineage Storage

(1) Flush
uncommitted
lineage

CounterFilter

!57

Global Lineage Storage

Stash Stash

Lineage stash recovery

Global Lineage Storage

(2) Ack
recovering
process

CounterFilter

!58

Global Lineage Storage

Stash Stash

Lineage stash recovery

Global Lineage Storage

(3) Retrieve
and replay
lineage

CounterFilter

!59

Tradeoff between low
latency and recovery time

Runtime overhead

Recovery
overhead

Logging

Global
checkpointing

Lineage
stash

!60

Latency without failures
BetterStreaming wordcount:

-32 m5.xlarge nodes
-30s checkpoint interval

!61

Latency without failures

Global checkpointing

Better

!62

Latency without failures

Logging the lineage
synchronously

Better

!63

Latency without failures
Better

Logging the lineage
asynchronously

!64

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

Time since start (s)

Throughput during recovery

Flink

WriteFirst

Lineage
stash

Streaming wordcount:
- 32 m5.xlarge nodes
- 30s checkpoint interval

!65

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

Time since start (s)

Global
checkpoint

Throughput during recovery

Flink

WriteFirst

Lineage
stash

Streaming wordcount:
- 32 m5.xlarge nodes
- 30s checkpoint interval

!66

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

Time since start (s)

Node
failure

Throughput during recovery
Ch

ec
kp

oi
nt Flink

WriteFirst

Lineage
stash

Streaming wordcount:
- 32 m5.xlarge nodes
- 30s checkpoint interval

!67

Global rollback and replay

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

Time since start (s)

Throughput during recovery

Flink

WriteFirst

Lineage
stash

Streaming wordcount:
- 32 m5.xlarge nodes
- 30s checkpoint interval

Ch
ec

kp
oi

nt

!68

Process new records since failure

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

Time since start (s)

Throughput during recovery

Flink

WriteFirst

Lineage
stashCh

ec
kp

oi
nt

!69

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

Time since start (s)

Partial rollback

Throughput during recovery

Flink

WriteFirst

Lineage
stashCh

ec
kp

oi
nt

!70

Latency during recovery
M

ed
ia

n
la

te
nc

y
(m

s)

Flink

WriteFirst

Lineage
stash

Record timestamp since start (s)

Streaming wordcount:
- 32 m5.xlarge nodes
- 30s checkpoint interval

!71

See the paper (or email me: swang@berkeley.edu) for:
• Discussion and evaluation of other applications
• Nondeterminism in data processing applications
• Protocols for flushing and recovering the stash

Key idea: Asynchronously log the lineage and forward
uncommitted lineage to guarantee recovery correctness.

Low latency during execution and low downtime after a
failure for large-scale decentralized data processing
applications.

Lineage Stash

!72

mailto:swang@berkeley.edu

