
Hoplite: Efficient and Fault-Tolerant Collective Communication
for Task-Based Distributed Systems

Siyuan Zhuang1,∗ Zhuohan Li1,∗ Danyang Zhuo2 Stephanie Wang1
Eric Liang1 Robert Nishihara1 Philipp Moritz1 Ion Stoica1

1University of California, Berkeley 2Duke University

ABSTRACT
Task-based distributed frameworks (e.g., Ray, Dask, Hydro) have be-
come increasingly popular for distributed applications that contain
asynchronous and dynamic workloads, including asynchronous
gradient descent, reinforcement learning, and model serving. As
more data-intensive applications move to run on top of task-based
systems, collective communication efficiency has become an impor-
tant problem. Unfortunately, traditional collective communication
libraries (e.g., MPI, Horovod, NCCL) are an ill fit, because they
require the communication schedule to be known before runtime
and they do not provide fault tolerance.

We design and implement Hoplite, an efficient and fault-tolerant
collective communication layer for task-based distributed systems.
Our key technique is to compute data transfer schedules on the fly
and execute the schedules efficiently through fine-grained pipelin-
ing. At the same time, when a task fails, the data transfer schedule
adapts quickly to allow other tasks to keep making progress. We
apply Hoplite to a popular task-based distributed framework, Ray.
We show that Hoplite speeds up asynchronous stochastic gradient
descent, reinforcement learning, and serving an ensemble of ma-
chine learning models that are difficult to execute efficiently with
traditional collective communication by up to 7.8x, 3.9x, and 3.3x,
respectively.
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1 INTRODUCTION
Task-based distributed systems (e.g., Ray [30], Hydro [19], Dask [44],
CIEL [32]) have become increasingly popular for developing and
running distributed applications that contain asynchronous and
dynamic computation and communication patterns, including asyn-
chronous stochastic gradient descent (SGD), reinforcement learning
(RL), and model serving. Today, many top technology companies
have started to adopt task-based distributed frameworks for their
distributed applications, such as Intel, Microsoft, Ericsson, and JP.
Morgan. For example, Ant Financial uses task-based distributed
systems to run their online machine learning pipeline and serve
financial transactions for billions of users [22].

There are two key benefits of building distributed applications
on top of task-based systems. First, it is easy to express asynchro-
nous and dynamic computation and communication patterns. A
task-based system implements a dynamic task model: a caller can
dynamically invoke a task 𝐴, which immediately returns an object
future, i.e. a reference to the eventual return value. By passing the
future as an argument, the caller can specify another task 𝐵 that
uses the return value of 𝐴 even before 𝐴 finishes. The task-based
system is responsible for scheduling workers to execute tasks𝐴 and
𝐵 and transferring the result of 𝐴 to 𝐵 between the correspond-
ing workers. Second, fault tolerance is provided by the task-based
system transparently. When a task fails, the task-based system
quickly reconstructs the state of the failed task and resumes exe-
cution [49, 52]. Well-behaving tasks do not need to roll back, so
failure recovery is low cost.

As a growing number of data-intensive workloads are moving to
task-based distributed systems, supporting efficient collective com-
munication (e.g., broadcast, reduce) has become critical. Consider
an RL application where the trainer process broadcasts a policy
to a set of agents that use this policy to perform a series of simu-
lations. Without the support for collective broadcast, the trainer
process needs to send the same policy to every agent which causes
a network bottleneck on the sender side.

Efficient collective communication is a well-understood problem
in the HPC community and in distributed data-parallel training.
Many collective communication libraries exist today, e.g., Open-
MPI [16], MPICH [31], Horovod [47], Gloo [14], and NCCL [34].
However, there are two limitations of traditional collective com-
munication implementations that make them an ill fit for dynamic
task-based systems.

First, a distributed application using traditional collective com-
munication must specify the communication pattern before runtime.
This allows the library to compute a static and efficient data trans-
fer schedule (e.g., ring-allreduce). For example, for synchronous
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distributed data-parallel training, the application specifies that all
workers participate in an allreduce communication, once per train-
ing round.

However, in task-based systems, the set of tasks or data objects
participating in the collective communication is not known before
runtime. One approach would be to wait until all the participating
tasks and objects are ready and then compute a static data transfer
schedule. Unfortunately, this design misses the opportunity to make
partial progress before the entire set of participants are ready, which
is critical for the performance of modern asynchronous applications,
e.g., distributed RL.

Second, because of the synchronous nature of collective commu-
nications, one process failure can cause the rest of the processes to
hang. Existing solutions leave the recovery up to the application.
A typical approach is to checkpoint the state of the application
periodically (e.g., every hour), and when a process fails, the en-
tire application rolls back to the previous checkpoint and restarts.
Unfortunately, this can be expensive for large-scale asynchronous
applications, and does not exploit the ability of tasks that are still
alive in the same collective communication group as a failed task
to make progress.

This raises an important question: how can we bring the efficiency
of collective communication to dynamic and asynchronous task-based
applications? There are two requirements that are unique to this
setting. First, the application must be allowed to specify the partici-
pants of a collective communication dynamically (i.e., at runtime).
Second, the collective communication implementation must be
asynchronous. This would allow tasks to make progress even if
other tasks in the same communication group have failed.

We design and implement Hoplite, an efficient and fault-tolerant
collective communication layer for task-based distributed systems.
Hoplite combines two key ideas: (1) Hoplite computes data transfer
schedule on-the-fly as tasks and objects arrive, and Hoplite executes
data transfer schedule efficiently using fine-grained pipelining. Col-
lective communication can make significant progress even if only
a fraction of the participants are ready. (2) Hoplite dynamically
adapts the data transfer schedule when a failure is detected to alle-
viate the effects of the failed task in collective communication. This
allows the live tasks to make progress. The failed task can rejoin
the collective communication after being restarted and complete
the communication.

We apply Hoplite to a popular task-based framework, Ray [30].
This allows us to evaluate a wide range of existingworkloads on Ray.
Our evaluations show that Hoplite can speed up an asynchronous
SGD by up to 7.8x, two popular RL algorithms (IMPALA [13], and
A3C [29]) on RLlib [27] by up to 1.9x, and 3.9x, respectively, and
improve the serving throughput time of an ensemble of ML models
on Ray Serve [42] by up to 3.3x, with only minimal code changes
and negligible additional latency in failure recovery.

This paper makes the following contributions:

• A distributed scheduling scheme for data transfer that pro-
vides efficient broadcast and reduce primitives for dynamic-
task systems.
• A fine-grained pipeline scheme that achieves low-latency
data transfers between tasks located both on the same node
or on different nodes.

def train(policy, num_agents, num_steps, batch_size):
# Start some rollouts in parallel.
grad_ids = [rollout.remote(policy)

for _ in range(num_agents)]
for _ in range(num_steps):

for _ in range(batch_size):
# Wait for the first rollout to finish.
ready_id = ray.wait(grad_ids)
# Update the policy with one gradient.
policy += ray.get(ready_id) / batch_size
# Remove this gradient from remaining gradients
grad_ids.remove(ready_id)

# Once one batch of agents finish, broadcast updated
# policy to finished agents and start new rollouts.
for _ in range(batch_size):

grad_ids.append(rollout.remote(policy))
return policy

(a) Dynamic tasks (Ray).

for _ in range(num_steps):
- for _ in range(batch_size):
- # Wait for the first rollout to finish.
- ready_id = ray.wait(grad_ids)
- # Update the policy with one gradient.
- policy += ray.get(ready_id) / batch_size
- # Remove this gradient from remaining gradients
- grad_ids.remove(ready_id)
+ # Reduce a batch of gradients
+  reduced_grad_id, unreduced_grad_ids = \
+  ray.reduce(grad_ids, num_return=batch_size, op=ray.ADD)
+ # Update the policy with the averaged gradient
+  policy += ray.get(reduced_grad_id) / batch_size
+ # Update remaining gradients
+  grad_ids = ray.get(unreduced_grad_ids)

# Once one batch of agents finish, broadcast updated
# policy to finished agents and start new rollouts.
for _ in range(batch_size):

grad_ids.append(rollout.remote(policy))

(b) Dynamic tasks + collective comm. (Ray + Hoplite).

Figure 1: Pseudocode for a typical RL algorithm to learn a policy. (a)
Dynamic tasks with Ray. Each train loop waits for a single agent to finish,
then asynchronously updates the current policy. The new policy is broadcast
to a batch of finished agents. (b)Modifications to (a) to enable Hoplite. Each
step reduces gradients from a subset of agents, updates the current policy,
broadcasts the new policy.

• Algorithms to adapt the schedule of the data transfers for
broadcast and reduce operations which allows live tasks
to make progress when other tasks that participate in the
collective communication have failed, and later allow those
failed tasks to rejoin.
• We demonstrate the benefits of Hoplite on top of a popular
task-based distributed system using several applications, in-
cluding asynchronous SGD, RL, and serving an ensemble of
ML models.

2 BACKGROUND
We first describe task-based distributed systems and their bene-
fits for developing distributed applications. We then describe the
challenges of integrating efficient collective communication into
them.

2.1 Task-Based Distributed Systems
The dynamic task programming model [4, 19, 30, 32, 44] allows
applications to express asynchronous and dynamic computation
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and communication patterns. For instance, Figure 1a shows how to
implement an asynchronous RL algorithm that updates the policy
with agent results one at a time, choosing them dynamically based
on the order of availability. Once a batch of agent results have been
applied, the resulting policy is sent to each finished agent to begin
the next round of rollout. This allows an agent that has a fast rollout
not need to wait for a worker that has a slow rollout (Figure 2a). To-
day, most RL algorithms [13, 29] leverage this type of asynchronous
execution for efficient training.

To support this type of asynchronous communication, task-based
distributed systems rely on a distributed object store to transfer
objects between tasks. The object store consists of a set of nodes,
each of which buffers a (possibly overlapping) set of application
objects. Each node serves multiple workers, which can read and
write directly to objects in its local node via shared memory. A
sender task stores the output into the object store and exits, allowing
it to release critical resources (e.g., CPU, GPU, memory) before the
receiver tasks are even scheduled. When receiver tasks are ready,
they directly fetch the object from the distributed object store. As is
standard [30, 32], the object store enforces object immutability and
uses a distributed object directory service to map each object to its
set of node locations. In addition, task-based distributed systems
support fast failure recovery [49, 52] by reconstructing the failed
task. Well-behaving tasks do not roll back to keep recovery low
cost.

However, if the gradients and the model are large enough in the
above RL example, task-based distributed systems incur significant
overheads from inefficient communication. For example, the trainer
(agent 2) in Figure 2a can become a network throughput bottleneck
since it has to receive the gradient and also send the new policy
from/to each agent individually. This bottleneck becomes more
severe when the number of agents increases.

2.2 Challenges in Collective Communication
Efficient collective communication has well-known solutions in
HPC community and in distributed data-parallel SGD. Many tradi-
tional collective communication libraries exist, including Gloo [14],
Horovord [47], OpenMPI [16], MPICH [31], and NCCL [34]. They
can use efficient data transfer schedule (e.g., ring-allreduce, tree-
broadcast) to mitigate communication bottlenecks in distributed
applications.

There are two application requirements for using traditional
collective communication libraries. First, the communication pat-
tern has to be statically defined before runtime. This is easy for
applications that have a bulk-synchronous parallel model. For ex-
ample, in synchronous data-parallel SGD, all the workers compute
on their partitioned set of training data and synchronize the model
parameters using allreduce. Second, when any worker fails, all the
workers participating in the collective communication hang, and
applications are responsible for fault tolerance. For HPC applica-
tions, this is typically solved by checkpointing the entire application
periodically (e.g., per-hour), and when a process fails, the entire
application rolls back to a checkpoint and re-execute.

Unfortunately, these two assumptions are fundamentally incom-
patible with task-based distributed systems. First, tasks are dynam-
ically invoked by the task-based system’s scheduler. This means it
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(b) Dynamic tasks + collective comm. (Ray + Hoplite).

Figure 2: Execution of a distributed RL algorithm. Each row is one agent.
Boxes represent computations, and arrows represent data transfers. 𝑔1-𝑔4
are the gradients produced by the agents. (a)Dynamic tasks (Ray). Gradients
are applied immediately. A batch of three gradients is applied to the current
policy before broadcasting. (b) Dynamic tasks but with efficient collective
communication, in Hoplite. To reduce the network bottleneck at agent 2,
agent 3 partially reduces gradients 𝑔3 and 𝑔4 (black box), and agent 3 sends
the policy to agent 4 (black dot) during the broadcast.

is possible that, when collective communication is triggered, only
a fraction of the participating tasks are scheduled. For example, on
existing task systems, broadcast is implicit: a set of tasks fetch the
same object. When only a subset of the receivers are scheduled,
it is not possible to build a static broadcast tree without knowing
how many total receivers and where and when the receivers will
be scheduled. Therefore, a collective communication layer for a task-
based system should adjust data transfer schedule at runtime based
on task and object arrivals.

Second, fast failure recovery is an important design goal for task-
based system [49, 52], because many asynchronous workloads have
tight SLO requirement (e.g., model serving). In existing task systems,
this is done by reconstructing and re-executing failed tasks only. If
traditional collective communication libraries are used, a failed task
causes the rest of the participating tasks to hang. Thus, a collective
communication layer for task-based systems has to be fault-tolerant:
allowing well-behaving tasks to make progress when a task fails and
allowing the failed task to rejoin the collective communication after
recovery.

3 DESIGN
Hoplite is an efficient and fault-tolerant collective communication
layer for task-based distributed systems. At a high level, Hoplite
uses two techniques: (1) decentralized fault-tolerant coordination of
data transfer for reduce and broadcast, and (2) pipelining of object
transfers both across nodes and between tasks and the object store.

We first present a send-receive exampleworkflow usingHoplite’s
core API (Table 1). We then describe Hoplite’s object directory
service, pipelining mechanism to reduce latency, and fault-tolerant
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def application():
x_id = send.remote()
recv.remote(x_id)

Task scheduler
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Figure 3: Example of a send and receive dynamic task program on a 2-node
cluster (N1 and N2). The task-based system consists of a pool of workers
per physical node and a scheduler. Hoplite consists of one local object store
per node and a global object directory service, which is distributed across
physical nodes.

receiver-driven coordination scheme for efficient object transfer in
details.

3.1 Hoplite’s Workflow
Our example creates a send task that returns x_id (a future), which
is then passed into a recv task. In Hoplite, we use an ObjectID to
represent a future or a reference to an object. During execution, the
application first submits the tasks to the task scheduler. The sched-
uler then chooses a worker to execute each task (step 1, Figure 3),
e.g., based on resource availability. According to the application,
recv cannot start executing until it has the value returned by send.
Note that the task-based system does not require the scheduler to
schedule tasks in a particular location or order, i.e. the recv task
may be scheduled before send.

In step 2, the task workers call into Hoplite to store and retrieve
objects. On node 1, the send worker returns an object with the
unique ID x_id. This object must be stored until the recv worker
has received it. Thus, the send worker calls Put(x) on Hoplite,
which copies the object from the worker into the local object store
(step 2 on N1, Figure 3). This frees the worker to execute another
task, but incurs an additional memory copy between processes to
store objects.

Meanwhile, on node 2, the recv worker must retrieve the object
returned by send. To do this, it calls Get(x) on Hoplite, which
blocks until the requested object has been copied into the worker’s
local memory (step 2 on N2, Figure 3). In step 3, Hoplite uses the
object directory service to discover object locations and coordinate
data transfer, in order to fulfill the client’s Put and Get requests. In
the example, the Hoplite object store on node 1 publishes the new
location for the object x to the directory (step 3 on N1, Figure 3).
Meanwhile, on node 2, the Hoplite object store queries the directory
for a location for x (step 3 on N2, Figure 3).

Hoplite’s object directory service (§3.2) is implemented as a
sharded hash table that is distributed throughout the cluster (Fig-
ure 3). Each shard maps an ObjectID to the current set of node
locations. When there are multiple locations for an object, the direc-
tory service can choose a single location to return to the client. The

object store also maintains information about objects that have only
been partially created to facilitate object transfer pipelining (§3.3).
For example, in Figure 3, the object store on node 1 publishes its
location to the object directory as soon as Put(x) is called, even if
the object hasn’t been fully copied into the store yet. This allows
node 1 to begin sending the object to node 2 while it is still being
copied from the send worker.

Finally, in step 4, the Hoplite object store nodes execute the data
transfer schedule specified by the object directory’s reply to node
2. Node 1 is the only location for x, so node 2 requests and receives
a copy from node 1 (step 4). Node 2 then copies the object from its
local store to the recv worker (step 5 in Figure 3), which again can
be pipelined with the copy over the network.

Hoplite provides two efficient collective communication schemes.
Hoplite implements efficient broadcast through coordination be-
tween the object directory service and the workers (§3.4), without
an explicit primitive. For reduce, Hoplite exposes an explicit Reduce
call to the task-based system. It is necessary because this lets Ho-
plite know that these objects are indeed reducible (i.e., the operation
is commutative and associative). Because an ObjectID is a future
that the object value may not be ready yet, the Reduce call also has a
num_objects input in case the user wants to reduce a subset of the
objects, giving Hoplite the flexibility to choose which num_objects
objects to reduce given their arrival time in the future. Figure 1b
shows how to modify the RL example to use Hoplite. This allows
the trainer to aggregate gradients from a dynamic set of agents
efficiently (Figure 2b).

Whenever a task fails, Hoplite recomputes a data transfer sched-
ule to avoid using the failed task in the collective communication,
and all the rest of the tasks can keep making progress (§3.5). Ho-
plite does not change how task-based distributed system tolerate
failures. The underlying task-based distributed system can quickly
reconstruct the state of the failed task using their built-in mech-
anism [52]. Once the state of the task is reconstructed, the task
resumes.

3.2 Object Directory Service
The object directory service maintains two fields for each object: (1)
the size of the object, and (2) the location information. The location
information is a list of node IP addresses and the current progress of
the object on that node. We use a single bit to represent the object’s
progress: either the node contains a partial or a complete object.
We store both so that partial object copies can immediately act as
senders, for both broadcast and reduce (§3.4).

Hoplite’s directory service supports both synchronous and asyn-
chronous location queries. Synchronous location queries block until
corresponding objects are created and locations are known. Asyn-
chronous location queries return immediately, and the object di-
rectory service publishes any future locations of the object to the
client.

A node writes object locations to the object directory service
in two conditions: when a local client creates an object via Put
and when an object is copied from a remote node. In each case,
the node notifies the object directory service twice: once when
an object is about to be created in the local store and once when
the complete object is ready. We differentiate between partial and
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Core Interfaces: Description
Buffer buffer← Get(ObjectID object_id) Get an object buffer from an object id.
Put(ObjectID object_id, Buffer buffer) Create an object with a given object id and an object buffer.
Delete(ObjectID object_id) Delete all copies of an object with a given object id.

Called by the task framework once an object is no longer in use.
Reduce(ObjectID target_object_id, int num_objects, Create a new object with a given object id from a set of objects

{ObjectID source_object_id, ...}, ReduceOp op) using a reduce operation (e.g, sum, min, max).
Table 1: Core Hoplite APIs. The application generates an ObjectID with a unique string and can pass an ObjectID by sending the string.

complete objects so that object store nodes with complete copies
can be favored during a broadcast or reduce (§3.4).

Optimization for small objects.Querying object location can intro-
duce an excessive latency penalty for fetching small objects, and the
overhead of computing efficient object transfer schedule is usually
not worthwhile for small objects in our use cases. Therefore, we
implement a fast path in the object directory service. For small ob-
jects (<64KB), we simply cache them in the object directory service,
and when a node queries for their location, the object directory
service directly returns the object buffers. Similar to object in the
per-node stores, cached objects must be freed by the application
via the Delete call when no longer in use.

3.3 Pipelining
Hoplite uses pipelining to achieve low-latency transfer between
processes and across nodes for large objects. This is implemented
by enabling a receiver node to fetch an object that is incomplete in
a source node. An object can be incomplete if the operation that
created the object, either a Put from the client or a copy between
object store nodes, is still in progress. To enable fetching incomplete
objects, as shown in the previous section (§3.2), the object directory
service also maintains locations of incomplete copies. Then, when
an object store receives a Get operation, it can choose to request
the object from a store with an incomplete copy.

By pipelining data transfers across nodes using the object direc-
tory service as an intermediary, it becomes simple to also pipeline
higher-level collective communication primitives, such as a reduce
followed by a broadcast (Figure 2b). Within the reduce, a node
can compute a reduce of a subset of the input objects and simulta-
neously send the intermediate result to a downstream node. The
downstream node can then compute the final reduce result by
computing on the intermediate result as it is received and simulta-
neously send the final result to any broadcast receivers that have
been scheduled. A broadcast receiver can then also simultaneously
send the final result to any other broadcast receivers.

Piplining between the task worker and local store on the same
node is also important to hide Put and Get latency for large objects
(steps 2 and 5 in Figure 3). The reason is that using the distributed
object store requires two additional data copies other than the
minimum needed to transfer data over the network. The sender
task worker must copy to its local store, and then the receiving local
store must also copy to its local worker. Our observation is that
the additional memory copy latency can be masked by the network
transfer if the memory copy is asynchronous. When a sender task
calls Put, Hoplite immediately notifies the object directory service

that the object is ready to transfer. A receiver can then fetch the
object before the entire object is copied into the sender node’s local
store. The receiver side’s pipelining mechanism is similar. When
the receiver task calls Get, the receiver task starts to copy the object
from the local store before the local store has a complete object.

By combining cross-node and in-node pipelining, Hoplite enables
end-to-end object streaming between the sender and receiver tasks,
even when there are multiple rounds of collective communication
in between.

Optimization for immutable get. Although Hoplite objects are
immutable, the receiver task still copies the object data from its local
store during a Get, in case it modifies the buffer later on. However,
if it only needs read access to the object, then Hoplite can directly
return a pointer inside the local store. Read-only access can be
enforced through the front-end programming language, e.g., with
const in C++.

3.4 Receiver-Driven Collective
Communication

Hoplite’s receiver-driven coordination scheme optimizes data trans-
fer using distributed protocols. In Hoplite, data transfer happens
in two scenarios: either a task calls Get to retrieve an object with
a given ObjectID, or a task calls Reduce to create a new object by
reducing a set of other objects with a reduce operation (e.g., sum,
min, max).

3.4.1 Broadcast. Broadcast in a task-based distributed system hap-
pens when a group of tasks located on multiple nodes want to get
the same object from its creator task. Specifically, a sender task from
node S creates an object with Put and a group of receiver tasks R1,
R2, ... fetches it using Get. For the receiver tasks that locate on
different nodes from the sender task, their corresponding receiver
nodes will fetch the object from sender node’s local object store to
the receiver nodes’ local object store. To simplify the description of
our method, we assume that the sender task and the receiver tasks
locate on different nodes and use the sender S and the receiver R1,
R2, ... to also refer to the local object store on the nodes.

Broadcast in a task-based distributed system is challenging be-
cause we have no knowledge of the tasks, including where these
tasks are located and when these tasks fetch the object. If all re-
ceivers simply fetch the object from the sender, the performance
will be restricted by the sender’s upstream bandwidth. Traditional
collective communication libraries can generate a static tree where
the root is the sender node to mitigate the throughput bottleneck.
The goal of Hoplite’s receiver-driven coordination scheme is to
achieve a similar effect but using decentralized protocols. Inspired

645



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Siyuan Zhuang et al.

� � �5� � � �6 � � �5�

� � �5�

� � �6 �5�

� � �5�

�5�

� � �5�� � �5�

� � �6

�D� �E�

�F¶� �G¶�

� � � �

� � �6 � � �5�

� � �5�

� � �5�

� � �5�� � �5�

� � �6

�F� �G�

� �6 �

Figure 4: An example of broadcasting an object (integer array {5, 1, 0})
from a sender (S) in Hoplite, when the receivers (R1-R3) arrive at different
times. (a) - (d) show the broadcast process without failure. (c’) and (d’) show
the broadcast process when R1 fails after (b).

by application-level broadcast [5, 6] in peer-to-peer systems that
uses high-capacity nodes to serve as intermediate nodes in the
broadcast tree, we use receivers who receives the object earlier
than the rest as intermediates to construct a broadcast tree.

When a receiver R wants to fetch a remote object, it first checks
if the object is locally available, or there is an on-going request
for the object locally. If so, the receiver just waits until it gets the
completed object. This avoids creating cyclic object dependencies.
Otherwise, R queries the object directory service for the object’s
location. The object directory service first tries to return one loca-
tion with a complete copy. If none exist, then the object directory
service returns one of the locations holding a partial copy. This
is so that partial objects can also act as intermediate senders, but
locations with complete copies are favored.

When the location query replies, R also removes the location
returned from the directory and immediately add itself to the object
directory as a location with a partial copy to enable pipelining. Once
the data transfer is complete, the receiver adds the sender’s location
back to the object directory service and mark itself as a location
with a complete copy. This makes sure that, for each object, a node
can only send to one receiver at a time, thus mitigating bottlenecks
at any single node.

Figure 4 shows an example of a broadcast scenario in Hoplite.
In Figure 4a, the first receiver R1 starts to fetch the object from
the sender S. In Figure 4b, S is still sending to R1, so it does not
appear in the object directory when the second receiver R2 arrives.
Thus, R2 fetches the object from R1, the partial copy. In Figure 4c,
R1 has finished receiving, but is still sending to R2. Then, the object
directory contains S and R2 as a complete and partial location,
respectively. In Figure 4d, R3 queries the object directory, which
chooses S over R2 as the sender because S has a complete object.

3.4.2 Reduce. Reduce happens when a task in a task-based dis-
tributed system wants to get a reduced object (e.g., summed or
maximal object) from a list of objects. In Hoplite, this happens via a
Reduce call. Similar to broadcast, we assume that each object to re-
duce is located on a separate node and we use R1, R2, ... to represent

both the object and the local object store on a node that stores the
corresponding object. Note that in a task-based distributed system,
the objects to reduce can become ready to reduce in any arbitrary
order.

How to reduce objects efficiently to accommodate dynamic ob-
ject creation is more challenging than broadcast. Broadcast is sim-
pler because a receiver can fetch the object from any sender, and
Hoplite thus has more flexibility to adapting data transfer schedule.
For reduce, we need to make sure all the objects are reduced once
and only once: when one object is added into a partial reduce result,
the object should not be added into any other partial results.

In Hoplite, we choose to use a tree-structured reduce algorithm,
while the question is what type of tree to use. Let’s think about re-
ducing 𝑛 objects. Without the support of collective communication
in task-based distributed systems, each node sends the object to a
single receiver. Let’s assume that the network latency is 𝐿 , network
bandwidth is 𝐵, and the object size is 𝑆 . This approach’s total reduce
running time is 𝐿 + 𝑛𝑆

𝐵
. The 𝐿 term is due to the network latency,

and 𝑛𝑆
𝐵

is due to the receiver’s bandwidth constraint, because every
node has to send the object in to it. This is a special kind of tree
where the degree of the root is 𝑛. When object size is very small
(i.e., 𝑆

𝐵
is negligible), the performance of this kind of tree is the best.

To mitigate the bandwidth bottleneck at the receiver, we can
generalize this 𝑛-nary tree to a 𝑑-nary tree. When we use a 𝑑-nary
tree, the total running time is𝐿 log𝑑 𝑛+𝑑𝑆𝐵 . It reduces the latency due
to the bandwidth constraint but incurs additional latency because
the height of the tree grows to log𝑑 𝑛. If an object is very large (i.e.,
𝑆
𝐵
≫ 𝐿), we can set 𝑑 = 1. This means all the nodes are in a single

chain, and its running time is 𝑛𝐿 + 𝑆
𝐵
. Note that we only need to

incur 𝑆
𝐵
for transferring the actual content of the object, because

we use fine-grained pipelining, i.e., intermediate nodes send the
partially reduced object to the next node. As we can see here, the
optimal choice of 𝑑 depends on the network characteristics, the
size of the object, and the number of participants (objects). In other
words, we choose the 𝑑 to minimize the total latency:

𝑇 (𝑑) =
{
𝑛𝐿 + 𝑆

𝐵
if 𝑑 = 1;

𝐿 log𝑑 𝑛 + 𝑑𝑆
𝐵

otherwise.
(1)

During runtime, Hoplite will automatically chooses the optimal 𝑑
based on an empirical measure of these three factors.

Once the topology of the tree is determined, we need to assign
nodes into the tree. Here we want to allow Reduce to make signif-
icant progress even with a subset of objects. To do so, we assign
arriving objects with a generalized version of in-order tree traver-
sal. For a 𝑑-nary tree, for each node, we traverse the first child,
the node itself, the second child, third child, ..., and the 𝑑-th child.
Figure 5a shows an example for reducing 6 objects with a binary
tree. Note that though MPI also supports tree-reduce, our method
is completely different: MPI’s tree is constructed statically, and our
tree is constructed dynamically taking the object arrival sequence
into consideration.

If a task only wants to reduce a subset of objects (i.e., num_object
is smaller than the size of the source object list in Reduce), the tree
construction process stops when there are num_object objects in
the tree. For example, if the task wants to reduce 6 out of 10 objects,
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(b) Reduce Tree with failure.

Figure 5: Examples of reduce where the objects arrive in the order of R1, R2, ..., R6. The numbers on the top of each node (and the numbers in leaf nodes)
represent the object to reduce and green blocks means the fraction of the object that is ready. The numbers on the bottom of each node represent the reduced
result and yellow blocks means the fraction of the object that has been reduced. Each intermediate node is responsible to reduce the subtree rooted at it. (a)
An example reduce tree consists of 6 objects. (b) The reconstructed reduce tree after R2 fails.

then the earliest arriving 6 objects are in the reduce tree structured
as Figure 5a.

An application can also specify the inputs of a Reduce incremen-
tally, i.e. by passing the ObjectID result of one Reduce operation
as an input of a subsequent Reduce operation. The data transfer for
composed Reduce operations will naturally compose together. In
particular, as soon as the first Reduce output is partially ready, it
will be added to the object directory service, where it will be dis-
covered by the downstream Reduce coordinator. The first output
can then be streamed into the downstream Reduce.

3.4.3 AllReduce. AllReduce is a synchronous collective communi-
cation operation that is useful for synchronous data-parallel train-
ing. Optimizing allreduce is not our design goal: people usually
do synchronous data-parallel training on specialized distributed
systems that are optimized for bulk-synchronous workloads (e.g.,
TensorFlow [1], PyTorch [37]) rather than on task-based distributed
systems. In Hoplite, a developer can express allreduce by concate-
nating reduce and broadcast.

3.5 Fault-Tolerant Collective Communication
In the previous subsection, we assume that there is no task fail-
ures. However, task failures can happen in a task-based distributed
systems for various reasons, including (1) the node that the task
is running on crashes, (2) the node runs out of available memory
and has to kill the task, and (3) the task encounters a runtime er-
ror. Task-based distributed systems already support transparent
fault-tolerance to tasks [52], but adding collective communication
support requires us to dynamically change data transfer schedule
when a fraction of the tasks fail when participating in the collective
communication. This is because we do not want a failed task to
block collective communication, and we want to allow a recovered
task to rejoin an existing collective communication.

3.5.1 Broadcast. When a sender failure is detected by the receiver
in broadcast, the receiver immediately locate another sender by
querying the object directory again. The new sender only needs
to send the remaining object that the receiver does not have. A
failed task can rejoin broadcast transparently because the failed
task can simply call Get on the same ObjectID to fetch the object.
Implementing this feature naively would cause cyclic object transfer

dependencies. For example, it is possible that two nodes try to fetch
the same object from each other. It is because when the a receiver
locates an alternative sender, the object directory can return the
address of another node which fetches the object from the receiver.
To avoid cyclic dependencies, we need to track the dependencies of
Get if the sender is not the original task that creates the object. If a
sender fails, the receiver only resumes if it can find another sender
whose dependencies do not include the receiver itself. Figure 4c’
shows the previous example if R1 fails. R2 resumes the fetch from
S, and when R3 comes, R3 can fetch from R2 (Figure 4d’).

3.5.2 Reduce. When a task fails during Reduce, this node is im-
mediately removed from the tree by the coordinator, and will be
replaced by the next ready source object. The guarantee is that to
reduce 𝑛 objects from𝑚 source objects, as long as at least 𝑛 objects
can be created (i.e.,𝑚 − 𝑛 tasks can fail), Reduce will return suc-
cessfully. Otherwise, Reduce completes when enough failed tasks
are reconstructed by the underlying task-based system’s recovery
mechanisms. A failed tree node causes its parent, its grandparent,
and all its ancestors to clear the reduced object. In the previous
example, Figure 5b shows the adapted tree after R2 fails. If the task
Reduce 6 out of 10 objects and R2 is recovered after R7 arrives, R7
replaces R2’s position in the tree. (R7 can also be the rejoined R2.)
R4 has to clear all the current reduced the object, because the final
result should be the Reduce result of R1, R3, R4, ..., R7. Any inter-
mediate result that contains R2’s object has to be cleared. Overall,
at most log𝑑 𝑛 nodes have to clear the current object.

4 IMPLEMENTATION
The core of Hoplite is implemented using 3957 lines of C++. We
provide a C++ and a Python front-end. The Python front-end is
implemented using 645 lines of Python and 275 lines of Cython.
We build the Python front end because it is easier to integrate
with Ray [30] and other data processing libraries (e.g., Numpy [35],
TensorFlow [1], PyTorch [37]). The interface between the Python
front-end and the C++ backend is the same as Hoplite’s API (Ta-
ble 1).

We implement the object directory service using a set of gRPC [17]
server processes distributed across nodes. Each directory server can
push location notifications directly to an object store node. Each
object store node in Hoplite is a gRPC server with locally buffered
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Figure 6: Round trip latency for point-to-point data communication on
Hoplite, OpenMPI, Ray, and Dask. We also include the theoretical optimal
RTT (i.e. total bytes transferred divided by the bandwidth).

objects. Upon a transfer request from a remote node (e.g., during
Get), the node sets up a direct TCP connection to the remote node
and pushes the object buffer through the TCP connection.

In our experiments, we observe that setting 𝑑 to 1, 2, or 𝑛 in the
tree reduce algorithm is enough for our applications. When a task
calls Reduce, Hoplite picks 𝑑 from 1, 2 and 𝑛 that minimizes the
estimated total latency based on the network latency 𝐿, bandwidth
𝐵, and the object size 𝑆 . Appendix B shows the effect of different
choices of 𝑑 .

5 EVALUATION
We first microbenchmark Hoplite on a set of popular traditional
network primitives (e.g., broadcast, reduce, allreduce). We then eval-
uate Hoplite using real applications on Ray [30], including asyn-
chronous SGD, reinforcement learning, and serving an ensemble
of ML models. We also test Hoplite with synchronous data-parallel
training workloads to estimate how much performance is lost if
people choose to run these static and synchronous workloads on
task-based distributed systems. Each application requires <100 lines
of code changes, most of which are for object serialization. All ex-
periments are done on AWS EC2. We use a cluster of 16 m5.4xlarge
nodes (16 vCPUs, 64GB memory, 10Gbps network) with Linux
(version 4.15). We run every test 10 times, and we show standard
deviations as error bars.

5.1 Microbenchmarks
We use two popular task-based distributed systems, Ray [30] (ver-
sion 0.8.6) and Dask [44] (version 2.25), as our baselines. In addition,
we compare Hoplite with OpenMPI [16] (version 3.3) and Gloo [14].
We chose OpenMPI because OpenMPI is the collective communi-
cation library recommended by AWS. We did not choose Horovod
because Horovod has three backends: OpenMPI, Gloo, and NCCL.
We have already tested OpenMPI and Gloo individually. We cur-
rently do not support GPU, so we do not test NCCL.

5.1.1 Point-to-Point Data Communication. We first benchmark di-
rect point-to-point transfer. On our testbed, writing object locations
to the object directory service takes 167 µs (standard deviation =
12 µs), and getting object location from the object directory service
takes 177 µs (standard deviation = 14 µs).

Hoplite’s point-to-point communication is efficient. We test
round-trip time for different object sizes using OpenMPI, Ray, Dask,
and Hoplite. Figure 6 shows the result. We also include the optimal
RTT, which is calculated by object_size/bandwidth × 2.

For 1 KB and 1MB object, OpenMPI is 1.8x and 2.3x faster than
Hoplite. For 1 GB objects, Hoplite is 0.2% slower than OpenMPI. Ray
and Dask are significantly slower. OpenMPI is the fastest because
MPI has the knowledge of the locations of the processes to commu-
nicate. Ray, Dask, and Hoplite need to locate the object through an
object directory service. Hoplite outperforms Ray and Dask because
(1) Hoplite stores object contents in object directory service for ob-
jects smaller than 64 KB (§3.2) and (2) Hoplite uses pipelining (§3.3)
to reduce end-to-end latency. Ray does not support pipelining, so
it suffers from the extra memory copy latency in the object store.
Our pipelining block size is 4MB, and thus larger object (1 GB) has
better pipelining benefits. On 1GB object, Hoplite achieves similar
performance as the underlying network bandwidth despite it has
additional memory copies. This is because fine-grained pipelining
successfully overlaps memory copying and data transfer.

5.1.2 Collective Communication. Next, we measure the perfor-
mance of collective communication on OpenMPI, Ray, Dask, Gloo,
and Hoplite, with arrays of 32-bit floats and addition as the reduce
operation (if applicable). We measure the time between when the
input objects are ready and when the last process finishes. For
both Hoplite and Ray, we assume that the application uses a read-
only Get to avoid the memory copy from the object store to the
receiver task (§3.3). Gloo only implements broadcast and allreduce.
For allreduce, Gloo supports several algorithms. We evaluated the
performance for all of them, and for presentation simplicity, we only
show the two algorithms with the best performance on our setup:
(1) ring-chunked allreduce and (2) halving doubling allreduce.

Figure 7 shows the results for medium (1MB) to large (1GB)
objects.2 We present the results for small objects (1KB, 64KB) in
Appendix A because small objects are cached in object directory
service in Hoplite, and there is thus no collective communication
to begin with. In summary, Hoplite achieves a similar level of per-
formance as traditional collective communication libraries, such
has OpenMPI and Gloo. Hoplite significantly outperforms Ray and
Dask, because Ray and Dask do not support efficient collective com-
munication. Gloo’s ring-chunked allreduce is the fastest allreduce
implementation for large objects in our tests.

Broadcast. We let one node first Put an object, and after the Put
succeeds, other nodes Get the object simultaneously. The latency of
broadcast is calculated from the time all nodes call Get to the time
when the last receiver finishes. Hoplite and OpenMPI achieve the
best performance for all object size and node configurations. This is
because Ray, Dask, and Gloo do not have collective communication
optimization for broadcast. Hoplite slightly outperforms OpenMPI
because of fine-grained pipelining.

Gather. We let every node first Put an object, and after every
node’s Put succeeds, one of the nodes Get all the object via their
ObjectIDs. The latency of gather is the Get duration. OpenMPI
and Hoplite outperforms the rest for all object size and node con-
figurations. This is because both Ray and Dask need additional
memory copying between workers and the object store. Hoplite
also needs additional memory copying, but the latency is masked
by fine-grained pipelining between workers and the object store.

2OpenMPI’s latency does not increase monotonically because OpenMPI chooses dif-
ferent algorithms on different conditions (e.g., number of nodes, whether the number
of nodes is a power of two, object size).
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Figure 8: Latency of 1 GB object broadcast/reduce/allreduce on 16 nodes when tasks start sequentially with a fixed arrival interval. Arrival interval equals to
0 means that all the tasks start at the same time. The dashed lines denote the time the last task arrives.

Reduce. We let every node first Put an object, and after every
node’s Put succeeds, one of the nodes Reduce the objects via their
ObjectIDs to create a new ObjectID for the result. The node then
calls Get to get the resulting object buffer. The latency of reduce is
calculated from the time the node calls Reduce to the time the node
has a copy of the reduce result. OpenMPI and Hoplite consistently
outperform the rest for all object size and node configurations since
Ray and Dask do not support collective communication. Hoplite can
slightly outperform OpenMPI because of fine-grained pipelining.

AllReduce. In Hoplite, we simply concatenate reduce and broad-
cast to implement allreduce. The latency of allreduce is calculated
from the time a node starts to Reduce all the objects to the last
node Get the reduce result. We divide the results into two groups in
Figure 7. Hoplite significantly outperforms Ray and Dask because
of the collective communication support of broadcast and reduce
in Hoplite. Note that efficient allreduce is not our design goal since
allreduce is a static and synchronous collective communication
operation. However, Hoplite still achieves comparable performance

with static collective communication libraries such as OpenMPI
and Gloo.

5.1.3 Asynchrony. Hoplite’s performance is robust even when pro-
cesses are not synchronized, which is typical in task-based dis-
tributed systems. We measure broadcast, reduce, and allreduce
latencies when the participating tasks arrive sequentially with a
fixed arrival interval. For broadcast (Figure 8a), OpenMPI makes
some progress before the last receiver arrives (§7). However, the
algorithm is static (i.e. based on process rank [16]), while Hoplite
achieves a lower latency with a dynamic algorithm that does not
depend on the particular arrival order. We do not include Gloo
because it does not optimize its broadcast performance (Figure 7).
For reduce (Figure 8b) and allreduce (Figure 8c), both OpenMPI
and Gloo have to wait until all processes are ready, while Hoplite
can make significant progress before the last object is ready. This
allows Hoplite to even outperform Gloo’s ring-chunked allreduce
when objects do not arrive at the same time.
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Figure 9: Training throughput (number of training samples per second)
for asynchronous SGD.

5.2 Asynchronous SGD
Asynchronous stochastic gradient descent (SGD) is one way to train
deep neural networks efficiently, and it usually uses a parameter
server framework [11, 25, 25, 26, 26]: clients fetch the parameters
from a centralized server, evaluate the parameters on its own por-
tion of data (e.g., performing forward and backward propagation
on a neural network), and send the updates (e.g., gradients) back to
the server independently. The parameter server needs to broadcast
parameters to and reduce from an uncertain set of workers.

Here we evaluate Hoplite with Ray’s example implementation of
an asynchronous parameter server [41]. We use three widely-used
standard deep neural networks, AlexNet [23] (model size = 233MB),
VGG-16 [48] (model size = 528MB), and ResNet-50 [18] (model
size = 97MB). We test two cluster configurations: 8 p3.2xlarge
nodes and 16 p3.2xlarge nodes on AWS. p3.2xlarge instance has
the same network performance as m5.4xlarge instance but with an
additional NVIDIA V100 GPU to accelerate the execution of the
neural networks. The asynchronous parameter server collects and
reduces the updates from the first half of worker nodes that finish
the update and broadcast the new weights back to these nodes.

We show the results in Figure 9. Hoplite improves the training
throughput of the asynchronous parameter server. Comparing to
Ray, it speedups training on asynchronous parameter server for
16 nodes by 7.8x, 7.0x, and 5.0x, for AlexNet, VGG-16, and ResNet-
50, respectively. Ray is slow because the parameter server has to
receive gradients from each worker and send the updated model
to each worker one by one. This creates a bandwidth bottleneck at
the parameter server. In Hoplite, these operations are optimized by
our broadcast and reduce algorithms.

5.3 Reinforcement Learning
RL algorithms involve the deep nesting of irregular distributed
computation patterns, so task-based distributed systems are a per-
fect fit for these algorithms. We evaluate Hoplite with RLlib [27],
a popular and comprehensive RL library on Ray. Distributed RL
algorithms can be divided into two classes: In samples optimization
(e.g., IMPALA [13], Asynchronous PPO [46]), a centralized trainer
periodically broadcasts a policy to a set of workers and gather the
rollouts generated by the workers to update the model. In gradients
optimization (e.g., A3C [29]), the workers compute the gradient
with their rollouts, and the trainer updates the model with the
reduced gradients from the workers.
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Figure 10: RLlib’s training throughput (number of training samples per
second) on Ray and Hoplite.

Weevaluate two popular RL algorithms, IMPALA [13] andA3C [29],
one from each class. We test two cluster configurations: 8 nodes
(1 trainer + 7 workers) and 16 nodes (1 trainer + 15 workers). The
trainer broadcast a model to the first half workers that have finished
a round of simulation (in IMPALA) or gradient computation (in
A3C). We use a two-layer feed-forward neural network with 64MB
of parameters. Figure 10 shows the training throughput. Training
throughput is calculated by the number of simulation traces (in
samples optimization) or gradients (in gradients optimization) the
RL algorithm can process in a second.

Hoplite significantly improves the training throughput of both
IMPALA and A3C. Hoplite improves the training throughput of
IMPALA by 1.9x on an 8-node cluster and 1.8x on a 16-node cluster.
The reason Hoplite outperforms Ray is because IMPALA has to
broadcast a model of 64MB frequently to the workers. We expect
more improvement when the number of nodes is higher, but we
already achieve the maximum training throughput: IMPALA is
bottlenecked by computation rather than communication using
Hoplite with 16 nodes (15 workers). For A3C, Hoplite improves the
training throughput by 2.2x on the 8-node configuration and 3.9x
on the 16-node configuration. Unlike IMPALA, A3C achieves almost
linear scaling with the number of workers. A3C on Ray cannot scale
linearly from 8 nodes to 16 nodes because of the communication
bottleneck.

5.4 ML Model Serving
Machine learning is deployed in a growing number of applications
which demand real-time, accurate, and robust predictions under
heavy query load [3, 10, 36]. An important use case of task-based
distributed system is to serve a wide range of machine learning
models implemented with different machine learning frameworks
[30].

We evaluate Hoplite with Ray Serve [42], a framework-agnostic
distributed machine learning model serving library built on Ray.
We set up an image classification service with a majority vote-
based ensemble of the following models: AlexNet [23], ResNet34
[18], EfficientNet-B1/-B2 [50], MobileNet V2 [45], ShuffleNet V2
x0.5/x1.0 [28], and SqueezeNet V1.1 [20]. We test two cluster con-
figurations: 8 p3.2xlarge nodes and 16 p3.2xlarge nodes on AWS.
For 8 nodes setting, we serve a different model on each node. For 16
nodes setting, each model is served by two different nodes and the
two nodes serve the model with two different versions of weight
parameters. Each query to the service includes a batch of 64 im-
ages of size 256×256. During serving, the service will broadcast the
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Figure 11: Ray Serve’s performance (queries per second) on Ray and
Hoplite for an ensemble of image classification models.
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Figure 12: Latency when a pariticipating task fails and rejoins on (a) Ray
Serve and (b) async SGD.

query to all the nodes to evaluate on different models, gather the
classification results, and return the majority vote to the user.

We visualize the results in Figure 11. Hoplite improves the serv-
ing throughput for serving an ensemble of image classification
models. Comparing to Ray, it speedups the serving throughput by
2.2x for 8 nodes and 3.3x for 16 nodes. This shows that the opti-
mized broadcast algorithm in Hoplite helps Ray Serve to improve
the serving throughput.

5.5 Fault Tolerance
We evaluate the failure recovery latency before and after we apply
Hoplite to Ray. We rerun our model serving with 8 models and
async SGD workloads with 6 workers, and we manually trigger
a failure. We do this experiment 10 times. Figure 12 shows one
particular run. The y-axis shows the latency per query (in model
serving) or per iteration (in async SGD), and the x-axis shows the
index of the query or the iteration. Hoplite significantly improves
Ray’s performance. Ray’s failure detection latency is 0.58 ± 0.13
second, and after we apply Hoplite to Ray, Ray’s failure detection
latency increases to 0.74 ± 0.05 second. The additional 28% latency
introduced by Hoplite is because Hoplite has a different failure
detection mechanism. Ray detects failure by monitoring the live-
ness of the worker process. Hoplite detects failure by checking the
liveness of a socket connection.

After the failure, Ray Serve’s latency drops because it only needs
to broadcast to less receivers. The latency comes back to normal
after the failed worker rejoins. For Hoplite, the latency difference
is negligible because of the efficient broadcast algorithm. Hoplite
takes more queries between the task fails and the task rejoins. This
is because Hoplite is efficient and has processed more queries dur-
ing the recovery window (the time between the failure and task
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Figure 13: Training throughput (number of training samples per second)
for synchronous data-parallel training.

rejoin). In async SGD, latency for training each iteration increases
in the recovery window because of the temporary loss of a worker.
The difference in recovery latency (duration of the recovery win-
dow) between Ray and Hoplite is negligible because both use Ray’s
mechanism to reconstruct the failed task.

5.6 Synchronous Data-Parallel Training
Synchronous data-parallel training involves a set of workers, each
runs on a partition of training data, and the workers synchronize
the gradients each round using allreduce [15]. Speeding up synchro-
nous data-parallel training workloads is not our design goal, and
they do not require the flexibility provided by task-based systems.
Instead, they can run directly on specialized distributed systems
that are optimized for static and synchronous workloads (e.g., Ten-
sorFlow [1], PyTorch [37]). These systems rely on efficient allreduce
implementations in traditional collective communication frame-
works (e.g., OpenMPI, Gloo).

However, an interesting question to ask is how much perfor-
mance developers have to pay if they choose to run these static
and synchronous workloads on task-based distributed systems. Our
cluster setup is the same as the asynchronous parameter server
experiment. In addition to Ray, we evaluate Gloo and OpenMPI.
We evaluate the Gloo baseline through PyTorch, which chooses
ring-chunked allreduce as its choice for Gloo’s algorithm.

We show the results in Figure 13. Hoplite significantly improves
the synchronous data-parallel training for Ray. Ray is slower than
Hoplite, OpenMPI, and Gloo, with the similar reason as in asyn-
chronous parameter server. Hoplite achieves similar speed with
OpenMPI. However, Hoplite is 12-24% slower than Gloo. This is
expected because ring-allreduce is more bandwidth efficient than
the tree-reduce plus broadcast in Hoplite.

6 DISCUSSION
Garbage collection. Hoplite provides a Delete call (Table 1) that
deletes all copies of an object from the store. This can be used to
garbage-collect an object whose ObjectID is no longer in scope in
the application. However, it is still the task framework or applica-
tion’s responsibility to determine when Delete can and should be
called, since only these layers have visibility into which ObjectIDs
a task has references to. The guarantee that Hoplite provides is
simple: when Put is called on an ObjectID, the object copy that is
created will be pinned in its local store until the framework calls
Delete on the same ID. This guarantees that there will always be
at least one available location of the object to copy from, to fulfill
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future Get requests. Meanwhile, Hoplite is free to evict any addi-
tional copies that were generated on other nodes during execution,
to make room for new objects. The overhead of eviction is very low,
since Hoplite uses a local LRU policy per node that considers all
unpinned object copies in the local store.

Framework’s Fault tolerance. Hoplite ensures that collective com-
munication can tolerate task failure. A task-based distributed sys-
tem has a set of control processes that can also fail, and they usually
require separate mechanisms to tolerate failures. For example, the
object directory service can fail and requires replication for dura-
bility. These failures are handled by the underlying framework
independent of whether Hoplite is used.

Network Heterogeneity. The design of Hoplite assumes that the
network capacity between all the nodes is uniform. Accommodat-
ing heterogeneous network can achieve higher performance (e.g.,
using high bandwidth nodes as intermediate nodes for broadcast,
fetching objects from a node which has lower latency). This can be
done by monitoring network metrics at run time. We do not need
this feature for our use cases because our cloud provider ensures
uniform network bandwidth between our nodes.

Integration with GPU. Hoplite currently does not support pipelin-
ing into GPU memory. If training processes need to use GPU, the
application has to copy data between GPU and CPU memory. In
the future, we want to extend our pipelining mechanism into GPU
memory.

7 RELATEDWORK
Optimizing data transfer for cluster computing. Cluster computing
frameworks, such as Spark [53] and MapReduce [12], have been
popular for decades for data processing, and optimizing data trans-
fer for them [7–9, 24, 39] has been studied extensively. AI appli-
cations are particularly relevant because they are communication-
intensive, and traditional collective communication techniques are
widely-used [14, 47, 51]. Pipelining is also a well-known technique
to improve performance [33, 38]. Our work focuses on improving
task-based distributed systems [19, 30, 44]. Applications on these
frameworks have dynamic and asynchronous traffic patterns. To
the best of our knowledge, Hoplite is the first work to provide effi-
cient collective communication support for task-based distributed
systems.

Using named objects or object futures for data communication. Us-
ing named objects or object futures for data communication is not
new. In serverless computing, tasks (or functions) cannot communi-
cate directly. As a result, tasks communicate through external data
stores [40], such as Amazon S3 [2] or Redis [43]. There, the storage
and compute servers are disaggregated, and computer servers do
not directly communicate. We target a standard cluster comput-
ing scenario, where data is directly transmitted between compute
servers. Object futures are a useful construct for expressing asyn-
chronous computation. Dask, Ray, Hydro, and PyTorch [37] all use
futures to represent results of remote tasks. Our work is comple-
mentary to them, showing that efficient collective communication
can co-exist with named objects or object futures.

Asynchronous MPI.MPI supports two flavors of asynchrony. First,
similar to a non-blocking POSIX socket, MPI allows an applica-
tion to issue asynchronous network primitives and exposes an

MPI_Wait primitive to fetch the result. Second, depending on the
MPI implementation, some collective communication primitives
can make some progress with a subset of participants. For example,
in MPI_Bcast, the sender generates a static broadcast tree. If the
receivers arrive in order from the root of the tree to the leaves of
the tree, the receivers can make significant progress before the last
receiver arrives. If not, then a receiver must wait until all its up-
stream ancestors are ready before making any progress (evaluated
in Figure 8). In Hoplite, the broadcast tree is generated dynamically
at runtime, so the arrival order does not matter. In addition, asyn-
chronous MPI primitives still require applications to specify all the
participants before runtime. In Hoplite, the communication pattern
can be expressed dynamically and incrementally, allowing Hoplite
to work with existing task-based distributed systems.

Collective communication in other domains.Optimizing data trans-
fer has been studied extensively in other domains. Application-level
multicast [5, 6] for streaming video on wide-area networks. IP mul-
ticast [21] enables a sender to send simultaneously to multiple IP
addresses at the same time. These work mostly focus entirely on
multicast rather than general-purpose collective communication in
distributed computing frameworks.

8 CONCLUSION
Task-based distributed computing frameworks have become pop-
ular for distributed applications that contain dynamic and asyn-
chronous workloads. We cannot directly use traditional collective
communication libraries in task-based distributed systems, because
(1) they require static communication patterns and (2) they are
not fault-tolerant. We design and implement Hoplite, an efficient
and fault-tolerant communication layer for task-based distributed
systems that achieves efficient collective communication. Hoplite
computes data transfer schedules on the fly, and even when tasks
fail, Hoplite can allow well-behaving tasks to keep making progress
while waiting for the failed tasks to recover. We port a popular
distributed computing framework, Ray, on top of Hoplite. Hoplite
speeds up asynchronous SGD, RL, model serving workloads by up
to 7.8x, 3.9x, and 3.3x, respectively. Hoplite’s source code is publicly
available (https://github.com/suquark/hoplite). This work does not
raise any ethical issues.

ACKNOWLEDGEMENTS
We thank our shepherd Kai Chen and the anonymous reviewers
for their insightful feedback. We also thank Hong Zhang and many
others at the UC Berkeley RISELab for their helpful discussion
and comments. In addition to NSF CISE Expeditions Award CCF-
1730628, this research is supported by gifts from Alibaba Group,
Amazon Web Services, Ant Group, CapitalOne, Ericsson, Facebook,
Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk, and
VMware. Danyang Zhuo is supported by an IBM Academic Award.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and et
al. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 265–283.

[2] Amazon S3 2020. Amazon S3. Object storage built to store and retrieve any
amount of data from anywhere. https://aws.amazon.com/s3/.

652

https://github.com/suquark/hoplite
https://aws.amazon.com/s3/


Hoplite: Efficient and Fault-Tolerant Collective Communication for Task-Based Distributed Systems SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

[3] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A
tensorflow-based production-scale machine learning platform. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1387–1395.

[4] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. 1996. Cilk: An efficient multithreaded runtime
system. Journal of parallel and distributed computing 37, 1 (1996), 55–69.

[5] M. Castro, P. Druschel, A. . Kermarrec, and A. I. T. Rowstron. 2002. Scribe: a
large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications 20, 8 (Oct 2002), 1489–1499. https:
//doi.org/10.1109/JSAC.2002.803069

[6] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. 2003. SplitStream: High-Bandwidth Multicast in
Cooperative Environments. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 298–313.
https://doi.org/10.1145/1165389.945474

[7] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Scheduling With-
out Prior Knowledge. In Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication (London, United Kingdom) (SIGCOMM
’15). Association for Computing Machinery, New York, NY, USA, 393–406.
https://doi.org/10.1145/2785956.2787480

[8] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion
Stoica. 2011. Managing Data Transfers in Computer Clusters with Orchestra.
SIGCOMM Comput. Commun. Rev. 41, 4 (Aug. 2011), 98–109. https://doi.org/
10.1145/2043164.2018448

[9] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient Coflow
Scheduling with Varys. In Proceedings of the 2014 ACM Conference on SIGCOMM
(Chicago, Illinois, USA) (SIGCOMM ’14). Association for Computing Machinery,
New York, NY, USA, 443–454. https://doi.org/10.1145/2619239.2626315

[10] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system.
In 14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17). 613–627.

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. 2012. Large
scale distributed deep networks. In Advances in neural information processing
systems. 1223–1231.

[12] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1, 107–113. https://doi.org/10.1145/
1327452.1327492

[13] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International Conference on Machine Learning. PMLR, 1407–1416.

[14] Gloo 2020. Collective communications library with various primitives for multi-
machine training. https://github.com/facebookincubator/gloo.

[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[16] Richard L Graham, Timothy SWoodall, and Jeffrey M Squyres. 2005. Open MPI: A
flexible high performance MPI. In International Conference on Parallel Processing
and Applied Mathematics. Springer, 228–239.

[17] gRPC 2020. gRPC. https://grpc.io/.
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[19] Hydro 2020. Hydro. https://github.com/hydro-project.
[20] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[21] IPMulticast 2020. IP Multicast Technology Overview . https://www.cisco.com/c/
en/us/td/docs/ios/solutions_docs/ip_multicast/White_papers/mcst_ovr.html.

[22] keynote 2020. Keynote: Building a Fusion Engine with Ray. https:
//ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-
ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[24] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Banerjee,
Joon-Myung Kang, and Puneet Sharma. 2014. Application-Driven Bandwidth
Guarantees in Datacenters. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014),
467–478. https://doi.org/10.1145/2740070.2626326

[25] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583–598.

[26] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander
Smola. 2013. Parameter server for distributed machine learning. In Big Learning
NIPS Workshop, Vol. 6. 2.

[27] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions
for distributed reinforcement learning. In International Conference on Machine
Learning. PMLR, 3053–3062.

[28] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV). 116–131.

[29] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of the 33rd
International Conference on International Conference onMachine Learning - Volume
48 (New York, NY, USA) (ICML’16). JMLR.org, 1928–1937.

[30] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and et al. 2018. Ray: A Distributed Framework for Emerging AI Applications. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and Im-
plementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA, 561–577.

[31] MPICH 2020. MPICH. https://www.mpich.org/.
[32] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil

Madhavapeddy, and Steven Hand. 2011. CIEL: a universal execution engine for
distributed data-flow computing.

[33] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized Pipeline Parallelism for DNN Training. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
1–15. https://doi.org/10.1145/3341301.3359646

[34] NCCL 2020. The NVIDIA Collective Communication Library (NCCL). https:
//developer.nvidia.com/nccl.

[35] NumPy 2020. NumPy. https://numpy.org/.
[36] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril Gorovoy,

Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar. 2017. TensorFlow-
Serving: Flexible, High-Performance ML Serving. In Workshop on ML Systems at
NIPS 2017.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[38] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,
Chuan Wu, and Chuanxiong Guo. 2019. A Generic Communication Sched-
uler for Distributed DNN Training Acceleration. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 16–29.
https://doi.org/10.1145/3341301.3359642

[39] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low Latency Geo-Distributed Data
Analytics. In Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication (London, United Kingdom) (SIGCOMM ’15). Association for
Computing Machinery, New York, NY, USA, 421–434. https://doi.org/10.1145/
2785956.2787505

[40] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193–206. https://www.usenix.org/conference/nsdi19/presentation/
pu

[41] Ray Parameter Server 2020. Parameter Server. https://ray.readthedocs.io/en/
latest/auto_examples/plot_parameter_server.html.

[42] Ray Serve 2021. Ray Serve. https://docs.ray.io/en/master/serve/.
[43] Redis 2020. Redis. https://redis.io/.
[44] Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and

task scheduling. In Proceedings of the 14th python in science conference. Citeseer.
[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[47] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv:1802.05799 [cs.LG]

653

https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1145/1165389.945474
https://doi.org/10.1145/2785956.2787480
https://doi.org/10.1145/2043164.2018448
https://doi.org/10.1145/2043164.2018448
https://doi.org/10.1145/2619239.2626315
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://github.com/facebookincubator/gloo
https://grpc.io/
https://github.com/hydro-project
https://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/ip_multicast/White_papers/mcst_ovr.html
https://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/ip_multicast/White_papers/mcst_ovr.html
https://ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group
https://ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group
https://ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group
https://doi.org/10.1145/2740070.2626326
https://www.mpich.org/
https://doi.org/10.1145/3341301.3359646
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://numpy.org/
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/2785956.2787505
https://doi.org/10.1145/2785956.2787505
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://ray.readthedocs.io/en/latest/auto_examples/plot_parameter_server.html
https://ray.readthedocs.io/en/latest/auto_examples/plot_parameter_server.html
https://docs.ray.io/en/master/serve/
https://redis.io/
https://arxiv.org/abs/1802.05799


SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Siyuan Zhuang et al.

[48] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[49] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E Gonzalez,
Joseph M Hellerstein, and Jose M Faleiro. 2020. A fault-tolerance shim for
serverless computing. In Proceedings of the Fifteenth European Conference on
Computer Systems. 1–15.

[50] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine Learning.
PMLR, 6105–6114.

[51] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur,
Jorgen Thelin, and Ion Stoica. 2020. Blink: Fast and Generic Collectives for
Distributed ML. In Proceedings of Machine Learning and Systems, I. Dhillon, D. Pa-
pailiopoulos, and V. Sze (Eds.), Vol. 2. 172–186. https://proceedings.mlsys.org/
paper/2020/file/43ec517d68b6edd3015b3edc9a11367b-Paper.pdf

[52] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra,
Alexey Tumanov, and Ion Stoica. 2019. Lineage Stash: Fault Tolerance off the Crit-
ical Path. In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 338–352. https://doi.org/10.1145/3341301.3359653

[53] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, and et al. 2016. Apache Spark: A Unified Engine for Big Data Processing.
Commun. ACM 59, 11 (Oct. 2016), 56–65. https://doi.org/10.1145/2934664

654

https://proceedings.mlsys.org/paper/2020/file/43ec517d68b6edd3015b3edc9a11367b-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/43ec517d68b6edd3015b3edc9a11367b-Paper.pdf
https://doi.org/10.1145/3341301.3359653
https://doi.org/10.1145/2934664


Hoplite: Efficient and Fault-Tolerant Collective Communication for Task-Based Distributed Systems SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A MICROBENCHMARKS ON SMALL OBJECTS
We present the microbenchmarks for multiple collective communi-
cation primitives for small objects (1KB, 32KB) in Figure 14. Note
that Hoplite stores object contents in object directory service for
objects smaller than 64KB (§3.2), so there is no collective commu-
nication for Hoplite. Again, we compare with Ray, Dask, OpenMPI,
and Gloo. We do not compare with Horovod for the same reason
that Horovord has three backends: OpenMPI, Gloo, and NCCL. We
have already compared with OpenMPI and Gloo. NCCL is for GPU,
and Hoplite currently does not support GPU.

Hoplite is the best or close to the best among all these alternatives.
Gloo has the best performance for broadcast and allreduce. Hoplite
is more efficient than Ray, and Dask because Hoplite uses stores
the object data directly in object directory service.

B ABLATION STUDY ON REDUCE TREE
DEGREE

Here we study the choice of 𝑑 in the AWS EC2 setting (§5). The
best choice of 𝑑 depends on network characteristics, the size of
the object to reduce, and the number of participants. We compare
three choices of 𝑑 : 1 (a single chain), 2 (a binary tree), and 𝑛 (a root
connects everyone else). The results are in Figure 15. As expected
from our analysis in (§3.4), when the object size is small, 𝑑 = 𝑛 is
the best because the main bottleneck is the network latency. When
the object size is medium (256KB, 1MB), 𝑑 = 𝑛 becomes unstable
for reduce. We suspect that this is due to incast or due to gRPC
characteristics. When object size is 4MB or 8MB, we need to choose
between 𝑑 = 1 and 𝑑 = 2 based on the number of participants. This
is because both network latency and network throughput can be a
bottleneck in tree reduce. When object size is 16MB or larger, we
choose 𝑑 = 1 to mitigate the throughput bottleneck in reduce.
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Figure 14: Latency comparison of Hoplite, OpenMPI, Ray, Dask, and Gloo on standard collective communication primitives (e.g., broadcast, gather, reduce,
allreduce) on 1KB and 32KB objects. To show the results more clearly, we split the results of Allreduce into two groups: group (i) includes Hoplite, Ray, and
Dask, and group (ii) includes Hoplite, OpenMPI, and two different allreduce algorithms in Gloo.
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Figure 15: Ablation study of reduce latency on the reduce tree degree 𝑑 with different object size and number of participants.
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