
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

ExoFlow: A Universal Workflow System
for Exactly-Once DAGs

Siyuan Zhuang, UC Berkeley; Stephanie Wang, UC Berkeley and Anyscale;
Eric Liang and Yi Cheng, Anyscale; Ion Stoica, UC Berkeley

https://www.usenix.org/conference/osdi23/presentation/zhuang

ExoFlow: A Universal Workflow System for Exactly-Once DAGs
Siyuan Zhuang
UC Berkeley

Stephanie Wang
UC Berkeley, Anyscale

Eric Liang
Anyscale

Yi Cheng
Anyscale

Ion Stoica
UC Berkeley

Abstract
Given the fundamental tradeoff between run-time and
recovery performance, current distributed systems often
build application-specific recovery strategies to minimize
overheads. However, it is increasingly common for different
applications to be composed into heterogeneous pipelines.
Implementing multiple interoperable recovery techniques
in the same system is rare and difficult. Thus, today’s users
must choose between: (1) building on a single system, and
face a fixed choice of performance vs. recovery overheads, or
(2) the challenging task of stitching together multiple systems
that can offer application-specific tradeoffs.

We present ExoFlow, a universal workflow system that en-
ables a flexible choice of recovery vs. performance tradeoffs,
even within the same application. The key insight behind our
solution is to decouple execution from recovery and provide
exactly-once semantics as a separate layer from execution. For
generality, workflow tasks can return references that capture
arbitrary inter-task communication. To enable the workflow
system and therefore the end user to take control of recovery,
we design task annotations that specify execution semantics
such as nondeterminism. ExoFlow generalizes recovery for
existing workflow applications ranging from ETL pipelines
to stateful serverless workflows, while enabling further opti-
mizations in task communication and recovery.

1 Introduction
A key requirement for distributed applications is fault toler-
ance, i.e. the appearance of execution without failures even
when failures occur. In general, there is a tradeoff between
recovery and run-time overhead. For example, logging gen-
erally adds higher execution overhead but reduces recovery
time by allowing the system to only re-execute computations
that failed [23]. Meanwhile, checkpointing reduces execution
overhead but can impose higher recovery overhead as the
system must roll back additional computation after a failure.

Current distributed systems often choose different tradeoff
points between recovery and performance based on the
application. For example, Apache Spark uses lineage-based
logging for batch processing [48], and Apache Flink uses
checkpointing for stream processing [19].

However, it is becoming increasingly common for different
applications to be composed into heterogeneous pipelines.
For example, a machine learning pipeline might use batch
ingest to build a training dataset, then stream the data to a

batch distributed training job to reduce latency and memory
overhead. If we use a single recovery strategy for the entire
pipeline, performance and recovery may be suboptimal
because different recovery strategies are suited to different
applications. Thus, to optimize end-to-end performance and
recovery, we need to compose different recovery strategies.

Implementing multiple, interoperable recovery techniques
within the same system, let alone a single one, is challenging.
For example, Spark introduced “continuous processing” to
reduce performance overheads for stream processing applica-
tions, but this mode does not yet provide exactly-once seman-
tics during failures [10]. On the other hand, Flink has added a
batch processing mode, but this required building an entirely
separate recovery system from the streaming path [20].

Overall, these challenges have led to patchy support for
applications that have diverse requirements in the recovery-
performance tradeoff space. Users must choose between:
(1) building on a single system, and face a fixed choice of
performance vs. recovery overheads, or (2) stitching together
multiple systems that offer different application-specific
tradeoffs. The latter, however, is challenging and requires
coordinating the flow of data, control, and recovery across
disparate systems. This is true even in a single system, if
using disparate execution modes such as batch vs. streaming.

In this paper, we propose a universal workflow system
that enables a flexible choice of recovery vs. performance
tradeoffs, even within the same application. A workflow is a
directed acyclic graph (DAG) of tasks, where each task encap-
sulates a function call and edges between tasks represent data
dependencies. Workflows are used to orchestrate execution
across systems and thus prioritize generality. The DAG API
is popular because it allows arbitrary application code in each
task, from submitting a Spark job to invoking a microservice.

In contrast to other workflow systems, however, we
decouple the unit of execution from the unit of recovery. In
particular, ExoFlow guarantees fault tolerance by durably
logging the workflow DAG and coordinating task checkpoint
and recovery, while execution of the DAG is handled by a
generic “backend”. This has three key benefits. First, it en-
ables heterogeneous application pipelines that need multiple
recovery strategies for performance. Second, it augments
existing distributed execution frameworks that provide only
at-most-once or at-least-once semantics with strong exactly-
once semantics. Third, it disaggregates the execution backend
from recovery, allowing independent deployment and scaling.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 269

Previous workflow systems provide exactly-once seman-
tics but with significant limitations. For generality, workflow
systems such as Apache Airflow [3] assume that each task
is nondeterministic and may have side effects on external
systems that in general cannot be rolled back. Thus, each task
must synchronously checkpoint its outputs before they can be
made visible to any downstream tasks. Otherwise, the system
may have to re-execute the task in case of a failure. If the re-
execution produces a different result, this can cause an incon-
sistent view among downstream tasks and external systems.

Thus, by assuming the worst, the workflow system has only
one option of ensuring fault tolerance: no task can start before
its upstream tasks have finished checkpointing all of their
outputs. This limits the workflow system’s ability to incorpo-
rate key optimizations often employed by application-specific
frameworks that exploit the application’s semantics. For exam-
ple, large datasets passed between tasks can often be determin-
istically regenerated, making checkpointing unnecessary. In
addition, while some tasks may indeed have external effects,
e.g., starting a transaction on an external database, some ef-
fects can also be rolled back, e.g., by aborting the transaction.

Our goal is to hand control over recovery to ExoFlow and
ultimately the end user. Thus, we use two key interfaces to
enable awareness of application semantics. First, we extend
the typical workflow DAG API with pluggable first-class
references to enable more flexible workflow-internal commu-
nication. A workflow task can return references to its outputs,
which the workflow system then passes to downstream tasks.
In contrast, current workflow systems require the application
to pass data by explicitly copying and checkpointing, which
can be expensive for large data, or implicitly through external
storage, which makes it difficult to guarantee exactly-once
semantics. By using references to capture arbitrary data move-
ment between workflow tasks, ExoFlow leverages third-party
systems’ existing communication and recovery mechanisms
while retaining control over workflow-level recovery.

Second, we introduce user annotations that specify relevant
task semantics, i.e. whether to checkpoint a task, whether
the outputs are deterministic, and whether the task has
externally visible outputs. Before execution, ExoFlow checks
the safety of the user’s specification. During execution,
ExoFlow synchronizes task execution and checkpointing.
During recovery, ExoFlow coordinates rollback, e.g., deletion
of outputs from a previous execution, and task replay. For
example, before executing a task with an externally visible
output, ExoFlow will first synchronize upstream checkpoints
to commit any nondeterministic outputs, i.e. ensure they will
never be rolled back. This allows the user to flexibly and
safely optimize the recovery technique.

ExoFlow is built on Ray [37] and consists of a per-workflow
centralized controller, a pluggable checkpoint storage, and a
pluggable execution backend. Centralizing controller logic
makes it simple to guarantee recovery correctness. Mean-
while, checkpointing and execution are fully disaggregated,

allowing these to be scaled independently of the controller.
We demonstrate the benefits of ExoFlow with two

execution backends, the Ray framework and AWS Lambdas,
both distributed frameworks that provide at-most-once or
at-least-once tasks. We show that references can enable ∼5×
speedup for Spark data processing workflows compared to
Apache Airflow, while task annotations enable 51% lower
latency for transactional serverless workflows compared
to Beldi [49]. These optimizations are possible because
correctness is ultimately guaranteed by ExoFlow. These
results also demonstrate ExoFlow’s universality, as the
system is not specific to data processing or serverless
environments. In summary, our contributions are:

1. Decoupling execution from recovery to enable a flexible
tradeoff between performance and fault tolerance.

2. Designing a universal workflow system that guarantees
exactly-once DAG execution.

3. Demonstrating benefits for a diverse set of applications,
including an ML pipeline, serverless transactions, and
graph processing that mixes stream and batch execution.

2 Motivation

2.1 Overview of recovery strategies
We use exactly-once semantics as our correctness condition.
This condition often implies application-specific correctness
properties, such as global consistency in message-passing
systems [23] or linearizability in storage systems [29].

More precisely, exactly-once semantics require all outputs
to appear consistent with a physical execution where all
inputs were processed without failures. In a workflow setting,
the inputs are the DAG and the root task arguments. Outputs
are values produced by a task that are viewed by others.

Output visibility can be internal or external. For example,
values passed between tasks in Figure 1a are internal because
they are viewed only by other tasks. Meanwhile, (key,val)
is external because it is sent to a key-value store. Once
outputs are made external, the workflow system no longer
has control over how they will be used, e.g., via reads from
external key-value store clients. Outputs can also be either
deterministically or nondeterministically generated.

Output visibility and determinism are important because
together they determine the recovery procedures that will
guarantee exactly-once semantics (Figure 1b). For example,
consider the cases if A is nondeterministic and we do not
checkpoint a_out in Figure 1a. Suppose C views an initial
value a_out1 and produces c_out1, but we lose a_out1 due
to a failure. If we re-execute A to produce a_out2 and pass
this to B, the outputs of B and C will not be consistent with
a failure-free execution. To handle this case, we also need
to “rollback” c_out1 and re-execute C on a_out2.

We encounter additional problems in the opposite case
where B finishes and we then lose a_out1. B has already made
(key,val) external and these values may depend on a_out1.

270 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

If we execute C on a_out2, c_out will be inconsistent with
(key,val). Thus, the only way to guarantee correctness in
this case is to either: (1) “commit” a_out1 before executing
B, e.g., by checkpointing it, or (2) gain application semantics
about how to roll back visibility of (key,val).

Meanwhile, deterministic outputs are safe to view as
long as the task can be replayed on its original inputs and
recomputed outputs can be deduplicated. The external output
in Figure 1a can for example be deduplicated by attaching
a deterministic req_id.
Solution space. Handling nondeterministic outputs is gener-
ally done in two ways: (1) global checkpointing and rollback
on failure, or (2) logging and deterministic replay on fail-
ure [23]. Both “commit” a prefix of a failure-free execution
by saving the outputs of a task frontier, allowing recovery to
resume execution from a consistent set of intermediate out-
puts. Global checkpointing advances this frontier several tasks
at a time and upon failure, rolls back to the last frontier to undo
partially visible nondeterministic outputs. For outputs that
cannot be rolled back, however, upstream nondeterministic
outputs must first be committed by taking a global check-
point. Logging-based methods advance the frontier one task
at a time by committing each nondeterministic output before
making it visible, thus avoiding additional rollback on failure.

Note that rollback and durability options vary based on out-
put visibility. External outputs may be impossible to roll back,
e.g., a transaction commit cannot be undone, or make durable,
as third-party system context is not always serializable.

Current workflow systems guarantee exactly-once seman-
tics by: (1) durably checkpointing each internal output before
making it visible, and (2) requiring the developer to make
external outputs idempotent and durable. This one-size-fits-all
approach does not leverage application-specific recovery
methods (Figure 1b). Furthermore, existing workflow systems
have fundamental limits on internal outputs, usually because
they must be sent between tasks through the workflow
controller. Apache Airflow uses a database to coordinate
tasks, which imposes a maximum output size on the order
of MBs [3], and direct task communication in FaaS is
limited [24]. Together, these force developers to use external
outputs for much of their task communication [24, 42].

Our goal is to support different recovery methods in a
single workflow system and even within a single application.
The key insight behind ExoFlow is that knowing the DAG
structure makes it simple to identify a consistent execution
frontier, allowing the recovery methods before and after the
frontier to be decoupled. For example, a_out is internal to
the outlined sub-DAG in Figure 1a and thus its recovery
method can be chosen flexibly as long as the inputs (args)
and outputs (b_out,c_out,key,val) are consistent.

Thus, our solution consists of two parts. First, references
enable ExoFlow to capture a broader range of inter-task
communication as internal outputs, without being involved
in the physical communication. This encourages recovery

A(args) B(a_out)

C(a_out)
args

a_out

D(args,
b_out, c_out)

c_out
d_out

External state

root()

b_out

put(key, val)

(a) Workflow DAG
Internal External

Nondeterministic Commit output OR on
failure, rollback visibility

Commit output before
visibility OR if possible,
rollback visibility on failure

Deterministic Replay failed task(s) on pre-
vious inputs, dedupe outputs

Also dedupe external out-
puts

(b) Recovery strategies for workflow DAGs

Figure 1: (a) An example workflow with internal outputs (e.g., a_-
out) and external outputs (e.g., put(key,val)). (b) The most efficient
recovery strategy depends on output visibility and nondeterminism.

flexibility within a sub-DAG and recovery independence
across sub-DAGs. References enable efficient passing of task
outputs of any size and location as well as outputs that may
not be serializable.

Second, we support annotations to specify task semantics
(checkpointing, nondeterminism, output visibility). These al-
low the system to determine recovery correctness before exe-
cution. The system “commits” the application to this specifica-
tion by durably logging the DAG before execution, then coor-
dinates and synchronizes task checkpoints during execution.

2.2 Applications
We use three representative applications to show the value of:
(1) making workflow-internal outputs more flexible, and (2)
exposing application semantics to the workflow controller:

1. Extract-transform-load (ETL) pipelines: Using
references to pass large data as internal outputs.

2. Machine learning (ML) pipelines: Using references to
pass large data and leveraging application semantics.

3. Serverless workflows: Leveraging application semantics
to reduce recovery overheads, in a way that is agnostic
to external systems.

ETL pipelines. Workflow systems such as Apache Airflow
are commonly used to orchestrate extract-transform-load
(ETL) pipelines composed of data processing jobs. Figure 2a
shows an example in which a Spark job A performs batch
data cleaning and writes the data to an external database, e.g.,
Delta Lake [11]. Jobs B and C then load the data for querying.

Current practice for exactly-once workflow execution
requires all of A’s outputs to be made durable before executing
B and C. Synchronous checkpointing adds high overhead for
large and distributed data. In addition, B and C must each
reload the data, imposing an unnecessary memory copy. This
is of course unnecessary if A is deterministic. Execution sys-
tems such as Spark leverage this property to natively support
distributed in-memory caching. Ideally, A should pass its
output as a cached RDD [48] to B and C (Figure 2b), avoiding
the round trip to external storage, allowing B and C to share

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 271

A

table_name C

write(RDD,
 table_name)

External DB
RDD = read(
 table_name)

B

(a)

External DB

A
B

C

Sharing a cached Spark RDD
across workflow tasks

● Use an actor to hold Spark
context

● Async actor checkpoint,
which internally uses Spark
API to materialize to
external DB (or use native
checkpoint API)

● B and C can share the RDD
cached in-memory

● Mark execB and execC
tasks as idempotent, so
rollback is not required on
recovery.

RDD

(b)

Ingest

Dataset augmentation

Distributed training
pathname

Distributed FS

write(dataset,
 pathname)

dataset = read(pathname)

(c)

Distributed
FS

dataset
1

dataset
2

dataset
3

TF workers

TF workers

Ingest augmentData

augmentData

augmentData

train

train

train

model
1

model
2

model
3

dataset

(d)
Figure 2: (a) ETL workflow today, using external outputs for communication. (b) The same ETL workflow with internal outputs only. (c)
ML training workflow today, with external outputs and manual orchestration within a task. (d) The same ML workflow with internal outputs
only, and orchestration is handled by the workflow system. Third-party framework state (TF workers) can be passed between workflow tasks.

physical memory, and enabling asynchronous checkpointing.
Building such optimizations into a workflow system would

enable orchestration of arbitrary DAGs and third-party frame-
works. However, even with awareness of task determinism,
current workflow systems cannot execute Figure 2b due to
limitations in workflow-internal data passing.
ML pipelines. Machine learning (ML) pipelines are similar
to ETL pipelines, but with an ML application as the end
consumer. This requires composition of traditional ETL
systems with distributed ML frameworks for training and
inference. Figure 2c shows a typical ML training workflow, in
which training data is extracted and transformed in the Ingest

task, then consumed by a distributed training job. Loading
data into the training job may itself require complex and
possibly distributed data processing, with computations such
as random transforms to augment datasets [40]. Furthermore,
datasets are often large enough that preprocessing must be
pipelined with training to maximize GPU utilization.

Current workflow systems cannot effectively orchestrate
within the training task, as training data and worker state
must be passed through distributed memory. Expanding
workflow-internal outputs would enable workflows such as
Figure 2d. To reduce the overhead of recovery, however, the
workflow system also requires application semantics, such
as whether dataset augmentation is deterministic. Also, the
model output can be consumed in a variety of ways, from
local one-off testing during development to deployment on
an ML serving system during production. All of these factors
affect the optimal correct recovery strategy.
Serverless workflows. In the functions-as-a-service (FaaS)
model, the user breaks their application into small functions
that can be transparently executed and scaled without explicit
resource provisioning. Serverless functions have a limited life-
time, all local state is transient, and failure handling is usually
limited to function retries. This makes it challenging to build
fault-tolerant nontrivial applications directly on FaaS [28].

Recently, serverless workflow systems [16, 46, 49] have
gained popularity as a solution, especially for stateful appli-
cations. A common strategy for guaranteeing exactly-once
execution is to provide fault-tolerant APIs to capture external
outputs. For example, Figure 3 shows an example of a trip
reservation workflow [25] that places the order if and only if
both the hotel and flight were successfully reserved. Systems
such as Aft [46], Beldi [49], and Boki [32] guarantee exactly-

beginTxn commitOr
Abort(txn)

reserve(hotel)

reserve(flight) reserved?

placeOrder(
hotel, flight)

ok?txn: {id, …,}

Transaction buffer
or write-ahead log

Figure 3: Serverless workflow systems [32, 46, 49] guarantee
exactly-once semantics by interposing on all communication to
external storage, e.g., through a transaction buffer, and explicitly
managing visibility of these external effects.

once semantics by providing a transactional key-value store
to manage external output visibility.

However, each system offers different isolation levels that
require different recovery strategies. Aft buffers uncommitted
writes, which are safe to rollback, while Beldi and Boki use
write-ahead logging. Thus, each system implements their own
recovery procedures, e.g., durability and task re-execution.

ExoFlow factors out workflow recovery to enable flexibil-
ity and optimizations. Instead of providing opinionated APIs
for external outputs, we treat external systems such as the
transaction buffer in Figure 3 as a black box. ExoFlow does
not interpose on the communication to this external system
and instead requires that the application can specify task se-
mantics such as whether the external effect can be rolled back.
These semantics can be specified by a particular transaction
system, i.e. Aft or Beldi.

3 API
3.1 Overview and requirements
ExoFlow is a general workflow layer that abstracts a workflow
backend, i.e. a distributed framework providing at-least-once
and/or at-most-once remote function invocation. We overview
the application-facing API (Table 1) and requirements. The
application must be able to: (1) differentiate deterministic
tasks, and (2) for tasks with external outputs, ensure that the
task is idempotent or specify an idempotent rollback function.
DAG interface. The application invokes workflow tasks
and specifies arguments using f.bind (Table 1). The caller
receives a WorkflowDAG that represents the task’s output and
that can be passed to other tasks as dependencies. Workflow
execution is lazy: to evaluate a WorkflowDAG, the developer
must run it. This is to simplify recovery, as the workflow
system can check DAG-level properties before executing it.

The workflow backend should implement an RPC-like inter-

272 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Workflow API Semantics

f.options(Opts).bind(Value | WorkflowDAG)

→ WorkflowDAG

Create a workflow task f. Creates and returns a WorkflowDAG, whose value is lazily evaluated. The caller may
pass the WorkflowDAG to another task. The return value of f can be a WorkflowDAG, i.e. a nested workflow.

run(WorkflowDAG w, str name) → Value Run the workflow w and return the result. Optionally take a string identifier for this workflow.
run_async(WorkflowDAG w, str name) → Fut Run the workflow w asynchronously and return a future that can be used to retrieve the result.
Ref.get() → Value Used by the application to dereference to a value. Ref construction is backend-specific.

bool Opts.checkpoint=True True if the task’s output should be saved.
bool Opts.deterministic=False True if outputs are deterministically generated.
bool Opts.can_rollback=False True if task has no external outputs, or if they can be rolled back. If False, the task must be idempotent.
Fn Opts.rollback=null If external outputs can be rolled back, a function to do so. The function must be idempotent, and any

WorkflowDAG arguments must be a subset of the original workflow task f’s arguments.

Ref._id() → ID Used by the workflow system to compare equality.
Ref._checkpoint() → Fut[Value] Used by the workflow system to coordinate checkpointing. The Value is the checkpoint data or metadata.
Ref._restore(Value) Used by the workflow system to reload from a saved checkpoint.

Table 1: Workflow API. Top: API calls exposed to the application. Middle: Task annotations specified by application or third-party library.
Bottom: ExoFlow-internal Ref API, pluggable by execution backend.

face. Within a task, the application can invoke arbitrary local
or distributed execution. For greater generality, we also adopt
the dynamic task model [39]: tasks can dynamically invoke
exactly-once nested workflows by returning a WorkflowDAG.
Task annotations. The application specifies semantics rel-
evant to recovery at task invocation time (Table 1). The work-
flow system uses these to ensure correctness of: (1) coordi-
nation of distributed workflow checkpoints during execution,
and (2) output rollback and task re-execution upon failure.

First, the application specifies whether to skip checkpoint-
ing a task’s output. Note that the workflow system guarantees
correctness, so this can be considered an optimization hint,
e.g., to avoid recomputation for long tasks,

Next, the application can specify whether a task’s outputs
(both internal and external) are deterministic. This allows the
workflow system to minimize rollback during recovery.

Finally, the application specifies whether a task can be
rolled back and if yes, how to do so. Tasks with no external
outputs, such as the data processing tasks in Figure 2, should
set can_rollback=True. Tasks that have external outputs that
cannot be rolled back should set can_rollback=False and
ensure idempotence, as recovery may require re-execution.

Non-idempotent tasks with external outputs that can be
rolled back should set can_rollback=True and the rollback

callback. On failure, ExoFlow executes these rollback “tasks”
in reverse dependency order before resuming execution.
The rollback task can take any arguments available to the
original workflow task, but the application must additionally
guarantee that the rollback task is idempotent. For example,
to implement the transaction in Figure 3, rollback for the
beginTxn and reserve tasks could simply abort.

On run, ExoFlow checks the WorkflowDAG for specification
errors and throws an exception if any are found. In particular,
correctness requires the application to set checkpoints
between each nondeterministic task and each downstream
task with external output. Section 3.3 makes this precise.
Internal outputs. Direct task outputs are subject to limits
of the execution backend. For greater flexibility, ExoFlow

allows outputs to include Refs created by the task. Refs are
(optionally) pluggable by the execution backend. They are
intended to capture volatile outputs that would be expensive
or complex to natively support in ExoFlow, e.g., large dis-
tributed data or third-party framework context. For an AWS
Lambdas backend, for example, values can be stored in an
external (volatile) key-value store and the key can be passed
in a Ref. Other tasks can dynamically get the value, which
can throw an error if the value is irretrievable due to failure.

Refs are uniquely identifiable objects typically containing
backend-specific metadata. A task can only return Refs that
it created or that were passed to it by an upstream task. Then,
upon failure, ExoFlow can either restore the Ref from a
checkpoint, or trace the DAG back to the creating task. On
re-execution, the task need not return the same Refs as its
original execution. For example, with the annotation deter-

ministic=True, it is only necessary that the value of a returned
Ref is deterministic; the Ref itself may have a nondetermin-
istic ID. This is safe because ExoFlow simply cancels tasks
using the previous Refs and re-executes with the new Refs.

By default, Ref values are immutable. This improves recov-
ery efficiency, as it simplifies checkpointing and minimizes
task rollback. To capture task outputs that are expensive or
impossible to materialize, we also support stateful references,
i.e. actors [30]. An ActorRef extends Refs with application-
defined methods that execute on the actor’s state (Listing 1).
However, mutable state is more complex to recover efficiently
and correctly. Thus, compared to Refs, we limit how Actor-

Refs can be passed between workflow tasks (Section 3.4).

3.2 Model
We present a formal model of workflows to more precisely
capture the API and assumptions. A workflow G = (V,E) is
a directed acyclic graph with vertices V and edges E. Each
vertex vi has an associated function Fi, a function Ni repre-
senting a (potential) source of nondeterminism, a nullable
rollback function Ri, and the annotations described in Table 1.

A workflow execution produces one internal and one

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 273

beginTxn
acquire(txn,

hotel) commitOr
Abort(txn)acquire(txn,

flight)

reserve(txn,
hotel)

reserve(txn,
flight)

acquired?

reserved?

placeOrder(
hotel, flight)

ok?

txn: {id, …,}

Deterministic, no external outputs
Nondeterministic

External outputs can be rolled back
External outputs cannot be rolled back

rollback_acquire(txn, hotel)

rollback_acquire(txn, flight)

Rollback tasks. Only
executed if acquire tasks
must be rolled back

(a)

dataset
2

dataset
1

…

Ingest

augmentData train

augmentData

model
2

…

TF workers

train

(b)

init generate_df

Spark DF

A

Bexec(B)

Cexec(C)

(c)

Figure 4: (a) Task annotations. Edge cuts represent checkpoint=True. (b) Passing references (small boxes) in an ML workflow. Blue Refs are
actors that wrap TensorFlow worker state. (c) Passing an ActorRef in an ETL workflow. B and C call read-only methods on the Spark context actor.

external output per vertex, both nullable. For brevity, we
do not consider tasks with multiple outputs. We denote an
execution’s outputs by (OInt ,OExt), both mappings from
vertex to a single output oInt or oExt . Fi outputs oExt by
adding it to a global set W , which can be read by other tasks
and external processes. Each Fi takes as inputs:

• IInt : Internal outputs of vertices with an edge to vi.
• wi: A read of W , i.e. the external outputs so far.
• ni: A nondeterministic value returned by Ni.
In other words, an edge (vi,v j) indicates that vi’s internal

output is passed to task v j. Internal outputs passed between
vertices are analogous to messages passed between processes
in a message-passing model [23], except that the application
must declare the “messages” (dependencies) before execution.

Ni captures nondeterministic inputs. For example, if Fi de-
pends on the current time, then Ni returns the current time. We
assume that if Ni reads some external state, the external state
will not be rolled back (unless Fi is also rolled back via Ri).

The correctness condition relates outputs to a failure-free
execution. W denotes all possible sequences of reads of W
by an external process.
Definition 1 (Consistency). OInt , OExt are consistent with
a workflow G = (V,E) if W is monotonic and ∀w ∈W:

oExt ∈ w ⇒∃i,OExt [i] = oExt
∧

(OInt [i],oExt) =

Fi
(
[OInt [j] |(v j,vi) ∈ E] ,{OExt [j]|v j <G vi},

Ni()
)∧

{OExt [j]|v j <G vi} ⊆ w

More simply, from an external process’s perspective, if it
sees an external output, then: (1) the same output was seen
in all previous reads, (2) it must correspond to one invocation
of some Fi, and (3) it also sees the external outputs of all
predecessors of vi. This is analogous to global consistency
in message-passing [23], i.e. that every visible output has a
corresponding task that created it. The goal is to provide a
consistent execution under a crash failure model.

The application assumptions are as follows. For each vi:

1. If v j is concurrent with vi (vi ̸<G v j and v j ̸<G vi), then
Fi(IInt ,wi,ni) = Fi(IInt ,wi \{OExt [j]},ni).

2. If deterministic=True, then {OExt [j]|v j <G vi} ⊆
wi,w′

i =⇒ Fi(IInt ,wi,ni) = Fi(IInt ,w′
i,n

′
i).

3. If the oExt returned by Fi is not null, then either
can_rollback=False or Ri is not null.

(a) If can_rollback=False, then Fi is idempo-
tent. That is, if (oInt ,oExt) = Fi(IInt ,w,ni) and
(o′Int ,o

′
Ext) = Fi(IInt ,w′,n′i), then oExt = o′Ext .

(b) If Ri is provided, then it is a deterministic and
idempotent function of the task’s internal inputs. If
(oInt ,oExt) = Fi(IInt ,w,ni), then Ri(IInt) removes
oExt from all past reads of W .

(1) means that we do not consider cases in which a task
vi depends on a task v j’s external output, where vi, v j cannot
be ordered in G. To ensure consistency, v j’s external output
should be considered part of vi’s nondeterministic input, and
v j must set can_rollback=False. Regarding (3b), note that
the meaning of removing oExt from past reads is application-
dependent. For example, suppose Fi executes a transaction
and Ri aborts the transaction; if uncommitted reads are
allowed, then Ri does not need to roll back the reader.
Nested tasks and references. While not explicitly captured
in the above model, nested tasks can be thought of as tasks that
expand into a sub-workflow. Refs and ActorRefs are native
data types that can be returned in a function’s internal output.
Because actors are mutable, ActorRefs are versioned: if a
caller writes to an actor by calling a method on its ActorRef,
the caller’s resulting ActorRef is of a different version. This
becomes relevant in Section 3.4, which discusses the rules that
the application must follow to ensure exactly-once semantics
when ActorRefs are passed between workflow tasks.

3.3 Guaranteeing exactly-once execution
Task annotations simplify the decision of when to commit
task outputs. To illustrate this, we use Figure 4a, a modified
version of the workflow described in Figure 3. We show
the annotations for a workflow using an external two-phase
locking (2PL) transaction system. beginTxn generates a trans-
action context with a random txn_id. The acquire tasks each
attempt to acquire a lock on an external table row. If this is suc-
cessful, we attempt to reserve the flight and hotel if available,
then finally commit the transaction and place the order if both
succeed. The cuts in Figure 4a indicate checkpoint=True.

As an example, we first consider the acquire and commi-

tOrAbort tasks. acquire tasks are nondeterministic because
they depend on the run-time state of the external table. com-
mitOrAbort has can_rollback=False because it is impossible
to abort a committed transaction and vice versa. Although ac-

274 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

quire can be rolled back (e.g., by aborting the transaction and
releasing the lock), once we have started the commitOrAbort

task, it is no longer safe to do so because the transaction
may already be committed. Thus, we must ensure that both
acquire outputs are saved before commitOrAbort starts. We
can generalize this rule for the application as follows:

Invariant 1 (External output commit). For each workflow
task vi with deterministic=False, let G be the minimal
subgraph that contains vi and all downstream tasks (tasks for
which there is a path from vi). Then, for each workflow task
v j with can_rollback=False in G, there must exist a vertex
cut that partitions vi from v j such that all tasks in the cut
have checkpoint=True.

Intuitively the vertex cut of the sub-DAG defines a commit
point for the nondeterministic output of vi. There may exist
multiple such cuts. For example, another acceptable specifica-
tion in Figure 4a is to instead checkpoint the reserve outputs.

ExoFlow guarantees that at least one task frontier is fully
checkpointed by the time commitOrAbort (v j) starts. Interest-
ingly, this also tells us that we do not need to commit the ac-

quire outputs synchronously. In particular, the reserve tasks
in this case are deterministic, as their outputs depend only on
whether the lock was acquired and the value stored in the ex-
ternal table, which cannot be modified while locked. Further-
more, their external outputs are not visible while the lock is
held. Thus, in this case, it is safe to annotate the reserve tasks
with deterministic=True and can_rollback=True. Together,
these annotations allow ExoFlow to overlap the checkpoint of
acquire’s outputs with execution of the reserve tasks, as long
as the checkpoints are synchronized before commitOrAbort.

There is a similar requirement for rollback tasks. The
rollback tasks in Figure 4a are conditionally invoked by the
workflow system to undo external outputs of the acquire tasks.
We must ensure that all inputs to the original acquire task
are recoverable before execution. Otherwise, if the rollback
task and its inputs fail simultaneously, it will be impossible
to finish rollback. Thus, in Figure 4a, the application must set
checkpoint=True for beginTxn, and ExoFlow synchronizes
this checkpoint before executing the acquire tasks.

Invariant 2 (Rollback durability). For each path beginning
at a task vi with deterministic=False and ending at a task
v j that has a rollback function R j, there must exist at least
one vertex along the path with checkpoint=True.

Unlike Invariant 1, here we only require checkpointing
a single task to handle nondeterminism, as the availability
of a rollback function R j means that we do not need to
commit to the original output. The checkpointed task can
also be a task other than vi or v j. For example, if there were
additional deterministic tasks between beginTxn (T) and
rollback_acquire (R), then checkpointing any is sufficient.

Both invariants can be easily checked by walking the DAG
passed to run. If an invariant is not met, the system throws an
exception to the user. Annotations do therefore require user

@ray.remote

class SparkActor:

def __init__(self):

self.spark_context = connect(); self.df = None

def generate_df(self):

self.df = generate_df(self.spark_context).cache()

@const

def exec(self, seed: int) -> int:

return exec(self.df, seed=seed).count()

def _checkpoint(self):

return self.spark_context.save(self.df)

def _restore(self, path):

self.df = self.spark_context.load_df(path)

Listing 1: Psuedocode for passing a Spark DataFrame by actor. The
execution backend implements the actor. Public methods are user-
defined. Methods prepended by _ are called internally by ExoFlow.

cooperation, but note that a user with minimal performance
needs can use the defaults in Table 1. This specification triv-
ially satisfies the invariants and indeed corresponds to current
workflow systems that commit all task outputs. Section 4
describes how ExoFlow leverages the invariants to improve
run-time performance for more sophisticated specifications.

Note that the system will not durably record a nested work-
flow returned by a task with checkpoint=False. To simplify
recovery, we disallow sub-tasks with checkpoint=True, as we
may lose all references to these checkpoints upon failure. We
also disallow can_rollback=False and rollback, as these are
challenging to recover without workflow durability.

3.4 References
Immutable Refs enable efficient passing of large and

distributed data between workflow tasks. For example,
Figure 4b shows how the Ingest task from Figure 2d can use
Refs to return distributed in-memory data. ExoFlow tracks
inter-task Ref dependencies for recovery purposes, while the
execution backend handles intra-task execution (e.g., get).

Some cases require stateful actors for performance. For ex-
ample, the blue boxes passed between train tasks in Figure 4b
are ActorRefs representing a training worker’s state, e.g., a
Distributed TensorFlow session. This helps avoid expensive
materialization, such as the worker’s local model copy.

Guaranteeing exactly-once semantics for state is challeng-
ing. If one task writes the ActorRef’s state, the output is visible
to any other task holding a reference to the same actor. This
can cause cascading rollbacks on failure depending on how
ActorRefs are passed. Furthermore, checkpointing is more
challenging if multiple tasks write concurrently to the actor, as
the system must ensure that the actor checkpoint is consistent.

To simplify recovery, we limit ActorRef passing to two
patterns, analogous to a read-write lock. By default, the
ActorRef is in “write” mode. In this mode, only one workflow
task may have a reference to the actor at a time. That task can
call any actor methods as long as they finish before the task
returns. For example, in Figure 4b, only one train task refers

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 275

to each actor at a time. ExoFlow can then checkpoint the
actors’ state between tasks, and on failure, roll back the actors
with the workflow. This pattern is useful for abstracting and
checkpointing distributed workers in third-party frameworks
such as Distributed TensorFlow [9] and Flink [20].

If there are multiple concurrent workflow tasks with a ref-
erence to the same actor, however, the tasks are restricted to
read-only methods annotated by the user, as shown in List-
ing 1. Figure 4c shows an expanded Figure 2b in which we use
an ActorRef to capture a Spark DataFrame. Initially, A has the
only ActorRef, so it can write to the actor’s state (generate_-
df). B and C share the actor concurrently, however, and so
they are limited to read-only methods (exec). Invoking a write
method such as generate_df would throw a run-time error.

Similar to a read-write lock, ExoFlow can only provide
correctness if the application respects certain conditions. In
particular, the workflow tasks must explicitly pass ActorRefs

through their outputs and arguments. Any other ActorRefs

cannot be tracked by ExoFlow and exactly-once semantics is
not guaranteed, similar to reading a variable without holding
the lock. Also, while methods may be called asynchronously
on an ActorRef, a workflow task must synchronize any
outstanding calls to an actor before returning.

4 Architecture
We describe the ExoFlow design and the requirements of
the pluggable execution backend and persistent storage. The
workflow controller is a long-running service that can be
sharded by workflow (Figure 5). Persistent storage can be
implemented by any durable blob storage supporting puts and
gets with read-after-write consistency, such as Amazon S3.
The execution backend should implement a remote function
invocation interface, used by the controller to scale check-
pointing and task execution. The backend should provide:
(1) ability to detect and report task and Ref failures, and (2)
guarantee no resource leaks for failed task execution and Refs.

The controller runs as an event loop with the following
events: task or checkpoint completes, and task or checkpoint
failed. All critical workflow state, such as the workflow DAG,
is cached by the workflow controller and written-through to
persistent storage, making it simple to also recover the work-
flow controller. On restart, the controller simply scans the stor-
age for any unfinished workflows, and re-runs to completion.

4.1 Workflow execution
The workflow control layer is implemented using the system
Ray [37]. Ray provides remote task invocation, distributed
immutable memory, and distributed actors. However, Ray
only provides at-most-once or at-least-once guarantees and
lacks built-in persistence for memory and actors. Thus, Ray
tasks and actors are distinct from workflow tasks and actors,
which execute exactly-once and can be natively checkpointed.

We use Ray actors to implement the workflow controller
and task executors (Figure 5). The controller uses Ray’s

a b

c

Persistent storageWorkflow controller

Ex
ec

ut
or

 1

Ex
ec

ut
or

 2

A()
B(a)

C(a)
D(b,c)

x x

ID Args Output Placeholders Ckpted?

A [] Ref(be5) {} False

B [a] Ref(d1a) { :Ref(e02)} True

C [a] Ref(1bf) - PENDING

D [b,c] - - -

C(a)

Ckpt loc Value

/w0/A/spec …

/w0/B/spec …

/w0/B/output

/w0/B/x

… …

b

ID Value

B

x

b

Execution backends

Custom
application
checkpoints

Workflow storage

x

Figure 5: Workflow architecture. The controller and executors are
RPC-like services built using Ray actors. Each invocation on these
services returns a distributed future (system-internal Refs).

distributed futures [47] to coordinate task execution and
checkpointing. Distributed futures are an asynchronous
extension of RPC where each invocation returns a future
pointing to the eventual and possibly remote return value.
Ray actors and distributed futures also directly implement
application-facing references (Section 3).

We build on Ray for three reasons: (1) futures make it sim-
ple for the controller to manage concurrent task execution and
checkpointing, (2) passing remote values by reference avoids
bottlenecks from large task outputs being passed directly
through the centralized controller, and (3) the RPC-like inter-
face straightforwardly and efficiently wraps other execution
backends. For example, the Lambdas backend is implemented
by wrapping a synchronous Lambda invocation in a Ray task.

The controller is a state machine where the state describes
the current execution status of a workflow DAG and is
persisted in storage. On run, the controller logs the workflow
DAG specification (arguments, Opts, etc.) to durable storage
and triggers execution. On each iteration of the event loop, the
controller may select a workflow task whose inputs are ready
and submit the task to an executor. For example, in Figure 5,
the controller submits C to executor 1 and immediately
receives back the distributed future Ref(1bf). The controller
uses this system-internal Ref to wait for task completion, and
then passes it to downstream workflow tasks (e.g., D).

Checkpointing is carried out asynchronously by back-
ground threads on the executors, enabling parallel and
distributed checkpoints that are not bottlenecked by the cen-
tralized controller. To checkpoint an output, the executor asyn-
chronously writes a copy to a deterministic storage location
(e.g., w0/B/output in Figure 5). The controller considers the
checkpoint done once it is fully written. For convenience, the
controller can also synchronize the checkpoint by requesting a
signal from the executor (controller to executor 2 in Figure 5).

Checkpoint synchronization is required: (1) at the end

276 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of a workflow, (2) before executing a task with can_roll-

back=False, and (3) before executing a task with a rollback

option. Section 6 evaluates a simple policy that synchronizes
all pending checkpoints for a workflow in any of these cases
and shows that this provides sufficient performance for key
applications. A more sophisticated policy may synchronize
only the minimum necessary.

ExoFlow handles passing and checkpointing application
references (Section 3.4). When a task finishes, the executor
replaces any Refs and ActorRefs appearing in the task’s out-
put with placeholders, e.g., x in Figure 5. When passing the
output to another task, the controller also passes a list of con-
crete references (Ref(e02) for x) used by the executor to fill
the placeholders. Task checkpoints include a list of Ref check-
point locations, which are written in parallel and distributed
fashion. The controller restores and swaps Refs after a failure.

If a workflow task returns a WorkflowDAG as its output,
the controller simply records the sub-workflow (if check-

point=True), points the output of the parent task to the output
of the sub-workflow, then resumes execution.

4.2 Workflow recovery
The controller handles task and checkpoint failures. In both
cases, the protocol rolls back any previous outputs as needed,
then rolls “forward” by re-executing workflow tasks.

The first step is to determine the re-execution task frontier.
For example, suppose C in Figure 5 fails because we lost A’s
cached output Ref(be5). Then, we walk the DAG backwards
from C and add each visited task node to the re-execution set.
For each task, we check argument availability, i.e. whether the
value has a checkpoint or a live Ref. If all arguments are avail-
able, then we terminate. Else, we add the tasks that create the
arguments (A) to the re-execution set. If a visited task has de-

terministic=False, then we also add all tasks downstream to
the re-execution set. Thus, if C fails and we need to re-execute
A, we also re-execute B, even though it has a checkpoint.

From the re-execution task set, we carry out rollback. In
reverse-topological order of the re-execution set, we first
clear any cached output Refs and output checkpoints, e.g.,
/w0/B/output and /w0/B/x for B. If it has a rollback task, then
we re-execute this task, using the same protocol as normal task
execution. Finally, we resume workflow execution as normal,
starting from the earliest task frontier of the re-execution set.

Critical controller state is persisted, so recovering from
controller failure is straightforward. On failure, all in-memory
controller state (the table in Figure 5) is wiped, including
any Refs. On restart, the controller simply scans persistent
storage for incomplete workflows, rebuilds its in-memory
table, then re-executes them using the described protocol.
Correctness. We provide informal proofs that the final out-
puts are consistent (Definition 1). During normal execution,
this follows from the execution protocol: starting from a
consistent prefix of outputs, executing a task will produce
another consistent prefix.

For recovery, we first consider reconstruction of internal
outputs, i.e. values returned by workflow tasks. If the task is
deterministic, then the reconstructed output will match the
original. If the task is nondeterministic, then the described
rollback procedure returns execution to a consistent prefix that
does not include any results downstream to the original output.

Next, we consider external outputs: tasks with can_roll-

back=False or rollback defined. For a task T with can_roll-

back=False, the application guarantees idempotence, so it is
enough to show that once T begins, the failure-free execution
will include the same inputs for T . To show this, we rely on
Invariant 1 (Section 3.3) and checkpoint synchronization (Sec-
tion 4.1). The system synchronizes the partition provided by
Invariant 1 before submitting T ; thus once T begins, any
future recovery procedure will never add T to the rollback set.

If T instead has rollback defined, we must show that if T
fails, rollback will complete with the same view of inputs as
T ’s previous execution, before re-executing T . Invariant 2 and
checkpoint synchronization guarantee that we can determinis-
tically and idempotently recreate rollback’s original inputs.

Correctness also requires preventing conflicts between
different executions of the same task. For task checkpoints,
if the backend’s failure detection for executors is reliable,
then by the time we re-execute T , we can be sure that there
is no concurrent checkpoint in progress. Under unreliable
failure detection, the ExoFlow controller assigns unique
checkpoint locations to prevent races between concurrent
executions. This requires one extra durable write before each
task execution to record the expected checkpoint location.

For a task that returns Refs or ActorRefs, the execution
backend can provide reliable failure detection for references
by killing all copies of a Ref before reporting failure to
ExoFlow. Alternatively, a safe and efficient method that
works for both crash and fail-stop failures is to generate
unique references for each execution.

4.3 Execution backends
Integration. ExoFlow references are compatible with
existing third-party mechanisms for task communication and
recovery. For example, Ray does not provide exactly-once
semantics, but it does automatically reconstruct Refs

created by deterministic (at-least-once) tasks [47]. ExoFlow
encourages hierarchical recovery, wherein the execution
backend can attempt to handle Ref failures first, then throw
unrecoverable errors up to the workflow controller.

ExoFlow is compatible with backends that use logging and
checkpointing. In general, log-based tasks would use deter-

ministic=True and can_rollback=False annotations, while
checkpoint-based tasks would use deterministic=False and
can_rollback=True. The backend can also directly lever-
age ExoFlow for checkpointing instead of supplying a user-
defined rollback function; this shifts the responsibility of
checkpoint coordination to ExoFlow and automatically en-
ables optimizations such as overlapping with execution.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 277

Preventing leaks. The workflow layer ensures that previous
Refs and pending checkpoints do not leak; invalid Refs and
checkpoints are dropped during rollback. The execution
backend must additionally prevent resource leaks for dead
Refs. Dead Refs can be deleted via reference counting
(the controller calls back to the backend once a Ref goes
out of scope) or garbage collection (the backend scans the
controller’s in-memory state for dead Refs).

5 Implementation
ExoFlow is built on Ray v2.0.1, which uses gRPC [6] for
tasks and actors and a custom shared-memory object store for
Ref storage [37]. ExoFlow is implemented as a Ray Python
program in 4k LoC.

We implemented two execution backends for ExoFlow:
Ray itself (“ExoFlow-Ray”) and the serverless FaaS offering
AWS Lambdas (“ExoFlow-Lambdas”). In each case, a typical
deployment would use one Ray node to host the ExoFlow
controller. In ExoFlow-Lambdas, the controller node takes the
place of the gateway provided by AWS for their proprietary
serverless workflow offering (Step Functions).

We chose to implement ExoFlow on Ray for three reasons:

1. Support for first-class references to immutable data,
which we use to implement Refs.

2. Support for actors (stateful workers), which we use to
implement ActorRefs.

3. Low task and actor overhead, similar to pure RPC.

We also use Ray actors to implement executors. Workflow
tasks are stateless, but we use actors to store execution state
about checkpoints that are pending after task completion.

To build ExoFlow on another actor system such as
Akka [2] or Orleans [13], we must implement Refs. This is
straightforward for workloads that only pass small data. For
data-intensive workflows, one can build a custom in-memory
store that is tightly coupled to executors, as in Ray, or use an
external key-value store. The latter requires low implemen-
tation effort, but may result in poor locality. It is ideal if the
execution backend cannot be modified, e.g., to support values
larger than the Lambdas response size in Exoflow-Lambdas.

6 Evaluation
Our evaluation covers the following questions:

1. What overheads does ExoFlow add to at-least-once or
at-most-once execution backends?

2. How can applications leverage first-class references and
task annotations to have greater flexibility in recovery?

3. How does this flexibility in recovery strategy affect
performance during execution and recovery?

We compare primarily against these baselines: (1) exactly-
once workflow systems: Airflow [3], “standard mode” AWS
Step Functions [14], and the serverless workflow system
Beldi [49]; and (2) at-least-once distributed DAG systems:
“express mode” AWS Step Functions [14] and Ray [37].

Given the high execution overheads of exactly-once
workflow systems such as Airflow (Section 6.4), to fairly
address questions (1) and (3), we also compare against the
following ExoFlow modes:

1. SyncCkpt: Task outputs are synchronized before
executing downstream tasks. This is used to simulate
the recovery strategy of exactly-once workflow systems
such as Airflow.

2. NoCkpt: All task outputs except the final are skipped.
This is used to simulate the recovery strategy of an
at-least-once or at-most-once system. The application
must guarantee that all tasks are deterministic and
idempotent to achieve exactly-once semantics.

3. AsyncCkpt: The default mode of ExoFlow. Task outputs
are only synchronized where necessary, to provide
exactly-once semantics.

We conduct all of the experiments using the AWS cloud,
specifically in the us-east-1 region. ExoFlow and execution
backends are hosted on EC2 and use Amazon S3 (or EFS in
Section 6.2) for persistent storage.

6.1 ML training pipelines
We show how ExoFlow enables a flexible recovery-
performance tradeoffs for the workflow in Figure 2d. We
use an image classification example adapted from Azure
MLOps [4]. An ETL Ingest task (1 r3.2xlarge node)
downloads the compressed data from S3. “1×” in Figure 6
indicates one data copy with 569 raw image files and total
size 225MB. The task loads the images into memory, and
performs data cleaning and normalization with at-least-once
parallel Ray tasks. The dataset (1.4GB of memory per data
copy) is partitioned and passed using Refs to the dataset
augmentation tasks, via Ray’s shared-memory object store.
Dataset augmentation again uses Ray at-least-once tasks to
apply random cropping, flipping, and color adjustments to the
base dataset, once per epoch. Dataset augmentation requires
repeatedly processing the same dataset in a tight loop with
training. Therefore, the dataset augmentation stage accumu-
lates a total intermediate and checkpoint size of 67GB and
18GB respectively, per data copy. Training tasks are colocated
and pipelined with dataset augmentation (1 g4dn.12xlarge
node, 4 NVIDIA T4 GPUs). We use PyTorch data-parallel dis-
tributed training and the ConvNeXt Tiny (28.6M parameters)
model. PyTorch workers are passed using ActorRefs.

Figure 6L shows end-to-end duration of 25 epochs without
failures of different ExoFlow recovery modes, as a function of
dataset size. Here, we also include Selective AsyncCkpt (skip
checkpointing dataset augmentation outputs) and Workflow

Tasks (include at-least-once Ray tasks for data processing
in the workflow DAG instead of passing volatile Refs).

Duration predictably grows approximately linearly with the
dataset size for all strategies. The overhead of Workflow Tasks

is high because each data processing task is durably (and
unnecessarily) logged as part of the workflow. For the same

278 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1x 2x 3x 4x
Dataset Size

0
200
400
600
800

1000

D
ur

at
io

n
(s

)

Cluster Ingest data Train actor Aug. task Aug. data
Failure Type

0
250
500
750

1000
1250

D
ur

at
io

n
(s

)

Selective AsyncCkpt NoCkpt AsyncCkpt SyncCkpt Workflow Tasks

Figure 6: End-to-end duration for the ML workflow application shown in Figures 2d and 4b. Left: End-to-end duration without failure. Right:
End-to-end duration with different failure types. The shadow represents the execution time without failure.

workflow graph, the overhead for larger data varies depending
on the recovery strategy. NoCkpt represents the best possible
performance, where only the final model is checkpointed.
SyncCkpt represents existing workflow systems (Figure 2c)
and its overhead grows the most because checkpointing over-
head grows faster than computation overhead. AsyncCkpt’s
overhead grows less because checkpointing of augmented
datasets is overlapped with training tasks. Selective

AsyncCkpt has nearly identical duration as NoCkpt because the
Ingest checkpoint is perfectly overlapped with training tasks.

Meanwhile, Figure 6R shows end-to-end duration in
different failure scenarios compared to normal run-time
execution (dark): whole cluster failure (including the
ExoFlow controller); in-memory ingest data lost; PyTorch
worker actor lost; augmentation task lost; and in-memory
augmented data lost. Here, we see the tradeoff between
recovery and performance. SyncCkpt has similar or better
recovery time overhead than NoCkpt for cluster and ingest
data failures because it avoids re-executing the Ingest task,
but overall it does worse because of high normal run-time
overhead. Selective AsyncCkpt checkpoints the Ingest data
asynchronously, so recovering from cluster and ingest data
failures is fast because it simply restores the Refs from the
checkpoint. Together, Figure 6L and R demonstrate how the
developer can flexibly choose the best recovery strategy.

Figure 6R also demonstrates ExoFlow’s broad failure
coverage and ability to integrate with Ray’s built-in recovery:
Ray automatically reconstructs deterministic data processing
results but does not handle persistence or actor recovery [47].
Thus, ExoFlow handles the first four failures, while Ray
handles the last. Recovery for the last two failures is fast
because rollback and checkpoint restore are unnecessary.

6.2 Stateful serverless workflows
We compare ExoFlow on a travel reservation benchmark [26]
to Beldi [49], a recent system for fault-tolerant and transac-
tional stateful serverless workflows that uses intent logging
to ensure exactly-once semantics. Our implementation uses
Beldi’s APIs for reading and writing state but the ExoFlow
controller with an AWS Lambdas backend for workflow
execution and recovery. We use a single m5.16xlarge instance
to host ExoFlow and EFS for persistent storage, which

provides lower latency than S3. The benchmark procedure
follows [49], and we report response latency in Figure 7a.

ExoFlow achieves about 51% lower p50 latency than Beldi
for request rates up to 400, despite using the same execu-
tion system (AWS Lambdas) and state APIs (Beldi). This is
because most of the workflows have deterministic computa-
tion and no external effects (i.e. read-only), so the additional
logging used by Beldi is unnecessary for correctness. Fur-
thermore, Beldi schedules an additional Lambda function to
orchestrate others, while ExoFlow directly schedules Lamb-
das. When requests/s is higher than 700, ExoFlow’s median
latency is greater than Beldi’s. This is due to the Lambdas
invocation bottleneck at the ExoFlow controller node and can
be easily removed through sharding across workflows. The
Lambdas gateway used in Beldi is likely sharded internally.

The use of ExoFlow as a Lambdas gateway has benefits
in recovery time. Figure 7a also shows latency with a 10%
failure rate for all Lambdas. ExoFlow directly invokes
Lambdas, so it can detect failures and recover virtually
instantaneously, resulting in 0-31% extra overhead in p99
latency. In contrast, Beldi is fully decentralized and relies on
timeouts for recovery correctness. Thus, although Beldi-style
logging may reduce re-execution on recovery, the actual
recovery time would be lower-bounded by a timeout ([49]
evaluates 1min as a possible lower bound).

Figure 7b further demonstrates the performance benefit
of exposing application semantics to the workflow system.
We report latency of the most complex workflow in the
benchmark, the trip reservation request described in Figure 3.
Beldi implements the transaction using two-phase locking
(2PL). We demonstrate progressive improvement over the
original solution by varying the execution and recovery
strategy. First, we eliminate Beldi logs for dynamic task
invocation, as the DAG can be easily specified upfront,
reducing p50 and p99 latency by 17% and 25% respectively
(-WAL). Next, we parallelize the hotel and flight reservation
tasks, further reducing p50 and p99 latency by 17% and
15% respectively (+parallel). Beldi executes these tasks
sequentially because asynchronous invocation does not allow
retrieval of the reply. Finally, we split each reservation task
into two steps: lock acquisition and reservation, as seen in
Figure 4a. -async shows that with synchronous checkpoints,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 279

100 200 300 400 500 600 700 800 900 1000
Throughput (request/second)

0

200

400

600

800

1000

1200

1400

1600

La
te

nc
y

(m
s)

ExoFlow 50p
ExoFlow 99p
ExoFlow 50p w/ failure
ExoFlow 99p w/ failure
Beldi 50p
Beldi 99p

(a)

Method
0

100

200

300

400

500

600

La
te

nc
y

(m
s)

Beldi
-WAL
+parallel
+async
-async

(b)

0 1 2 3 4 5
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

ExoFlow AsyncCkpt
ExoFlow SyncCkpt
ExoFlow NoCkpt

(c)

Figure 7: (a) Response latency percentile for a serverless travel reservation benchmark [25]. (b) Median latency of the trip reservation request
from the travel reservation benchmark. Error bar represents 99-percentile latency. (c) Latency CDF of online-offline graph processing.

Trigger 1B 128KB 1MB 32MB 128MB
Operation

10−3

10−2

10−1

100

101

La
te

nc
y

(s
)

Airflow
AWS Std.SF-λ

AWS Exp.SF-λ
ExoF.-λ SyncCkpt

ExoF.-λ AsyncCkpt
ExoF.-λ NoCkpt

ExoF.-Ray SyncCkpt
ExoF.-Ray AsyncCkpt

ExoF.-Ray NoCkpt
Ray

(a)

1 2 4 8
Number of Consumers

0

20

40

60

80

D
ur

at
io

n
(s

)

Airflow
Spark

ExoFlow + SyncCkpt
ExoFlow + NoCkpt

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

1000

2000

3000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

5000

10000

15000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(d)
Figure 8: Microbenchmarks. (a) Triggering and data passing latency of ExoFlow and other workflow systems, using AWS Lambda (λ) and
Ray as execution backends. Missing bars indicate limitations in inter-task communication. (b) End-to-end run time for the ETL workflow
shown in Figures 2b and 4c, compared with Airflow and native Spark. (c, d) Maximum task throughput (c: 1 task/DAG; d: 100 tasks/DAG)
of 10k tasks, compared against Ray as an optimal baseline, on 1 node and 4 nodes.

this actually increases latency due to the added task. However,
+async shows that by overlapping checkpointing with
execution, we can further reduce p50 and p99 latency by 34%
and 16% respectively, without compromising correctness.

6.3 Online-offline graph processing
Distributed graph processing systems can be generally
divided into stream vs. batch processing [36]. Streaming
systems can handle continuous updates and produce timely
results, but may not offer the same precision as batch systems.

We use references in ExoFlow to link stream and batch

graph processing, producing a single application that can
both handle online queries and produce periodic exact
results. We use Ray actors to implement a version of
Kineograph [21], a streaming graph processing system that
uses distributed snapshots for consistency. Each workflow
task ingests one epoch of incoming graph updates to compute
a graph snapshot and an online approximate result, and
we periodically pass the snapshot in-memory to another
workflow task that uses Spark to compute the full result.

We evaluate on the SNAP Twitter follower network

280 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

dataset [33] (41M nodes and 1.5B edges), with each input
record representing an edge insert event. We run the push-
model TunkRank algorithm used by Kineograph to compute
Twitter user influences on a 3-node r3.8xlarge cluster, 1 for
streaming and 2 for the Spark cluster. We use two Ray actors
to process the input stream and use ExoFlow to checkpoint
and pass the ActorRefs between streaming tasks. Each
streaming task represents a 10-second epoch and also returns
4 Refs that represent the partitioned graph snapshot. These
Refs are passed to a Spark task every 20 epochs. Latency is
reported for 200 epochs, after an initial warmup of 150 epochs.
The average digestion rate is 44.94k tweets per second with
our dataset. Kineograph achieves about 40k tweets per second
with 2 ingest node + 48 graph nodes with a similar setting.
We outperform Kineograph likely because we utilize shared
memory for data passing, with more powerful hardware,
which significantly reduces overhead of data pushing.

Figure 7c shows a CDF for latency from input event to
the earliest time that the event is reflected in a streaming
task’s output (although inconsistent results can be returned
earlier by querying the ingest actors directly). AsyncCkpt

allows the snapshot to be viewed before it is checkpointed.
NoCkpt has impractical recovery overhead, but we use it as a
performance baseline. AsyncCkpt achieves similar latency as
NoCkpt, meaning that checkpointing overhead remains stable
as the graph grows larger; this is because streaming tasks
pass through previous Refs that are already checkpointed, so
ExoFlow only checkpoints new data on each epoch. SyncCkpt
is similar to Kineograph, checkpointing the snapshot before
making it visible, and adds less than 1s latency. Finally,
the error rate of the online results and the batch processing
task duration both grow linearly over time, confirming the
tradeoffs between batch vs. stream processing.

6.4 Microbenchmarks
Latency. With equivalent backends, ExoFlow matches or
reduces execution overheads of existing workflow systems
while enabling more flexible inter-task communication. Fig-
ure 8a (1 m5.8xlarge instance) shows the latency of workflow
execution (“Trigger”) and task execution with different size
arguments. We use exactly-once systems (Airflow [3], AWS
Standard Step Function [14]) and at-least-once systems (AWS
Express Step Function [14], Ray [37]) as baselines. Airflow is
an industrial custom-built workflow system while Step Func-
tions are the AWS-native workflow offering for Lambdas.

First, with the Lambdas backend, ExoFlow has similar
trigger latency as AWS Standard Step Function. Airflow
has generally high overhead due to coordinating execution
through a database, which can easily lead to inefficient scans.

“1B” in Figure 8a compares minimum task execution
latency. ExoFlow-Lambdas achieves comparable latency as
AWS Step Functions, as the primary overheads for exactly-
once and at-least-once execution come from durability and
Lambdas invocation, respectively. ExoFlow-Ray improves

upon the latter as it uses Ray for execution.
Finally, we compare the ability to pass large data

between tasks. AWS Step Functions limit data passing
to 256KB, but plain Lambdas have a size limit of 6MB.
Thus, ExoFlow-Lambdas can actually support larger data
sizes. This could be improved further with Refs, e.g., with
Redis [44] for distributed memory. Airflow’s XCom [1] can
support slightly larger data but is fundamentally limited by its
database-centric design. Meanwhile, ExoFlow-Ray uses Ray
Refs for efficient data passing. The gap between AsyncCkpt

and NoCkpt latency is small but grows with data size; although
the checkpoint is asynchronous, ExoFlow synchronously
copies the data to guard against concurrent writes.

In summary, ExoFlow’s low execution overheads make it a
practical replacement for existing workflow systems, and it en-
ables greater flexibility in task communication and recovery.
Data sharing for ETL. We evaluate ExoFlow against Air-
flow for a Spark workflow similar to Figure 2b (1 m5.8xlarge
instance, 4GB Spark memory). Figure 8b measures total
run time for a workflow that uses Spark to generate a 1GB
random dataset, followed by multiple downstream tasks that
consume the data with data sampling Spark jobs. Such a
workflow requires orchestration across Spark jobs, which
Spark does not provide, and is therefore often run on a
workflow orchestrator such as Airflow.

Airflow run time grows proportionately with the number
of consumers because they cannot share data in-memory.
Meanwhile, ExoFlow scales well even with synchronous
checkpointing because consumers share data via Spark’s
native cache. Furthermore, ExoFlow runs as fast as native
Spark alone, while facilitating composition with other
systems as well.
Throughput and Scalability. We measure maximum
throughput with varying numbers of controllers, (AWS
m5.2xlarge) nodes, and tasks per DAG. We use Ray as the
optimal baseline, as Ray is also the execution backend.

Figure 8c (1 task/DAG) shows that ExoFlow and Ray
both reach saturation after 4 controllers on one node. With
4 nodes, scalability continues, and the gap between ExoFlow
and Ray narrows at around 16 controllers. Figure 8d (100
parallel tasks/DAG) shows that throughput overall improves
via task batching. Again, with four nodes, both ExoFlow
and Ray scale linearly with the number of controllers.
ExoFlow achieved roughly 50% of Ray’s throughput, due
to additional overhead from workflow orchestration and
ensuring exactly-once semantics.

7 Related Work
Workflow systems. Industry workflow systems [3, 5, 7, 14]
orchestrate execution and recovery for distributed applica-
tions by durably logging the workflow, checkpointing task
outputs and replaying failed tasks. However, they require
external outputs to be idempotent and significantly limit how
tasks can pass data to each other (Section 2).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 281

Many workflow systems for FaaS focus on stateful server-
less workflows. Several provide a fault-tolerant transactional
key-value store interface [45, 46, 49]. ExoFlow is agnostic
to external state APIs and implementation and factors out
execution and recovery orchestration from such systems.

Some stateful workflow systems offer a fault-tolerant actor
programming model [8, 15, 16]. A common recovery tech-
nique is event sourcing, i.e. durably logging nondeterministic
events. However, this requires the developer to use special
APIs for nondeterministic code and can add higher overheads
than necessary when deterministic replay is not required for
application correctness [23, 38]. ExoFlow also supports plug-
gable actors but only with coarse-grained logging (i.e. record-
ing the workflow DAG) and checkpoint-based recovery (Sec-
tion 3.4). This is intentionally minimal, as it enables composi-
tion of both log- and checkpoint-based actor implementations.

ExoFlow is similar to DARQ [35]: both use composable
atomic steps (tasks) and asynchronous checkpointing. Unlike
DARQ, ExoFlow exposes references and annotations to avoid
materializing and/or persisting outputs where possible.
Dataflow systems. Many dataflow systems use the DAG
model [22, 31, 48]. Several use lineage reconstruction for re-
covery, a form of logging that records the DAG but not the
data, to reduce run-time overhead. CIEL [39, 41] also intro-
duces dynamic tasks, which we adopt. However, these systems
target data processing applications in which all tasks are state-
less and deterministic. Ray proposes a unified API for DAGs
and actors [37], which we also adopt, but cannot support
exactly-once semantics or persistence [47]. Tachyon [34] pro-
poses a method of optimizing checkpoints for lineage-based
systems; this could be applied to a future version of ExoFlow.

Other systems such as Naiad [38], Apache Flink [18] and
Canary [43] implement both batch and streaming dataflow
with message passing and global checkpoints at run time
for recovery. This produces lower latency but requires more
rollback on failure; it can also add more overhead for applica-
tions with frequent external outputs [23]. ExoFlow augments
log- and checkpoint-based systems by orchestrating recovery
across systems with different internal strategies (Section 6.3).

Falkirk Wheel [27] targets efficient and flexible recovery
for batch and streaming. It uses logical message timestamps
to transparently determine the minimum to roll back on
failure. ExoFlow provides practical recovery for black-box
functions (tasks) by asking semantics from the developer
through references and task annotations.
Actor systems. The actor model is a distributed pro-
gramming model where processes communicate through
asynchronous method calls [30]. Most systems do not guaran-
tee exactly-once semantics [2, 12, 17, 47]. ExoFlow provides
a limited exactly-once actor model to support workflows that
pass actors between tasks. Meanwhile, the application has
full flexibility of existing actor systems within a task.
Message-passing systems. Message-passing systems are
a generalization of actors in which processes communicate

through message sends and receives. There is a large body
of work on recovery for message passing, primarily focusing
on logging vs. checkpointing [23]. Our work adapts these
techniques to the distributed workflow setting and aims to
compose log- and checkpoint-based applications.

8 Discussion
References for framework interoperability. Like other
dataflow systems, ExoFlow captures the logical data
movement in an application. ExoFlow also aims to enable
interoperability across distributed execution frameworks,
unlike abstractions such as RDDs [48] or timely dataflow [38]
that are tightly coupled to a specific framework. This moti-
vates some of the differences between Refs and ActorRefs

vs. other dataflow abstractions: they can be used to capture
third-party data and context, they are serializable, and they
do not impose a particular model of parallelism.
Limitations. Using ExoFlow effectively requires developer
effort. ExoFlow offers recovery flexibility but the developer
must choose the right tradeoff for their application. For ex-
ample, the developer must decide how large a workflow task
should be, and whether checkpointing the output is desirable.
Currently task annotations are also very coarse-grained,
which makes the system general-purpose but also makes
it more challenging for an application to achieve optimal
performance and recovery overheads.

There are a number of future directions towards improving
ExoFlow’s interfacing with external systems. First, while
Refs allow the application to efficiently pass data between
workflow tasks, reading and writing a Ref’s data may still
require data movement to or from an external framework.
Second, currently ExoFlow does not support transactions,
i.e. there is no way to specify that a task should be rolled
back if another task fails. In this case, the developer must
manually roll back the effects of both tasks, e.g., in a final
commitOrAbort task. Finally, for cases where tasks read and
write external state, capturing more fine-grained semantics
could reduce developer burden and improve performance.
For example, native support for popular types of external
state (e.g., a database) could be added.

9 Conclusion
Many existing distributed systems provide specialized,
efficient, and transparent recovery for specific application
domains. ExoFlow has an orthogonal and complementary
goal. To unify heterogeneous applications, we must provide
general and interoperable recovery methods. The greatest
challenge is to gain sufficient application semantics without
sacrificing flexibility. ExoFlow presents one approach that
strikes a balance between usability (minimal annotations,
compile-time safety checks) and functionality (flexible Refs,
automatic recovery). In doing so, we hope to provide universal
recovery that matches a universal API: the workflow DAG.

282 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Acknowledgement
We thank the OSDI reviewers and our shepherd, Steven
Hand, for their valuable feedback. We also thank Haoran
Zhang and Vincent Liu for their insightful discussions and
help with Beldi. This work is in part supported by NSF CISE
Expeditions Award CCF1730628 and gifts from Astronomer,
Google, IBM, Intel, Lacework, Microsoft, Mohamed Bin
Zayed University of Artificial Intelligence, Nexla, Samsung
SDS, Uber, and VMware.

References
[1] Airflow XComs. https://airflow.apache.org/docs/

apache-airflow/stable/concepts/xcoms.html. Ac-
cessed: 2022-12-13.

[2] Akka. https://akka.io/.

[3] Apache Airflow. https://airflow.apache.org/.

[4] End-to-end mlops pipeline example on azure.
https://github.com/microsoft/MLOps/tree/master/
examples/KubeflowPipeline.

[5] Google Cloud Composer. https://cloud.google.com/
composer.

[6] gRPC. https://grpc.io.

[7] Kubeflow. https://www.kubeflow.org/.

[8] Temporal. https://temporal.io/.

[9] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).
Savannah, Georgia, USA, 2016.

[10] Michael Armbrust. SPARK-20928: Continuous
Processing Mode for Structured Streaming. https:

//issues.apache.org/jira/browse/SPARK-20928, 2017.

[11] Michael Armbrust, Tathagata Das, Liwen Sun, Burak
Yavuz, Shixiong Zhu, Mukul Murthy, Joseph Torres,
Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
et al. Delta lake: high-performance acid table storage
over cloud object stores. Proceedings of the VLDB
Endowment, 13(12):3411–3424, 2020.

[12] Joe Armstrong. Making reliable distributed systems
in the presence of software errors. PhD thesis,
Mikroelektronik och informationsteknik, 2003.

[13] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel
Kliot, and Jorgen Thelin. Orleans: Distributed virtual
actors for programmability and scalability. Technical
Report MSR-TR-2014-41, March 2014.

[14] Jyothi Prasad Buddha and Reshma Beesetty. Step
functions. In The Definitive Guide to AWS Application
Integration, pages 263–342. Springer, 2019.

[15] Sebastian Burckhardt, Badrish Chandramouli, Chris
Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, Christopher S Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless
workflows. Proceedings of the VLDB Endowment,
15(8):1591–1604, 2022.

[16] Sebastian Burckhardt, Chris Gillum, David Justo,
Konstantinos Kallas, Connor McMahon, and Christo-
pher S Meiklejohn. Durable functions: semantics
for stateful serverless. Proc. ACM Program. Lang.,
5(OOPSLA):1–27, 2021.

[17] Sergey Bykov, Alan Geller, Gabriel Kliot, James R
Larus, Ravi Pandya, and Jorgen Thelin. Orleans: Cloud
computing for everyone. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 16. ACM, 2011.

[18] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State management
in Apache Flink: Consistent stateful distributed stream
processing. Proc. VLDB Endow., 10(12):1718–1729,
August 2017.

[19] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi,
and Kostas Tzoumas. Lightweight asynchronous
snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603, 2015.

[20] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 36(4), 2015.

[21] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao,
Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng
Zhao, and Enhong Chen. Kineograph: taking the pulse
of a fast-changing and connected world. In Proceedings
of the 7th ACM european conference on Computer
Systems, pages 85–98, 2012.

[22] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, January 2008.

[23] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi,
Yi-Min Wang, and David B Johnson. A survey of
rollback-recovery protocols in message-passing systems.
ACM Computing Surveys (CSUR), 34(3):375–408, 2002.

[24] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 283

https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://akka.io/
https://airflow.apache.org/
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://cloud.google.com/composer
https://cloud.google.com/composer
https://grpc.io
https://www.kubeflow.org/
https://temporal.io/
https://issues.apache.org/jira/browse/SPARK-20928
https://issues.apache.org/jira/browse/SPARK-20928

and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 475–488, 2019.

[25] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 3–18, 2019.

[26] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 3–18, 2019.

[27] Ionel Gog, Michael Isard, and Martín Abadi. Falkirk
wheel: Rollback recovery for dataflow systems. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pages 373–387, 2021.

[28] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez,
Johann Schleier-Smith, Vikram Sreekanti, Alexey
Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

[29] Maurice P Herlihy and Jeannette M Wing. Lineariz-
ability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463–492, 1990.

[30] Carl Hewitt, Peter Bishop, and Richard Steiger. A
universal modular actor formalism for artificial intel-
ligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, IJCAI’73, page
235–245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

[31] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07,
pages 59–72, New York, NY, USA, 2007. ACM.

[32] Zhipeng Jia and Emmett Witchel. Boki: Stateful
serverless computing with shared logs. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 691–707, 2021.

[33] Jure Leskovec and Andrej Krevl. SNAP
Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

[34] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing, pages
1–15, 2014.

[35] Tianyu Li, Badrish Chandramouli, Sebastian Bur-
ckhardt, and Samuel Madden. Darq matter binds
everything: Performant and composable cloud program-
ming via resilient steps. In Proceedings of the ACM on
Management of Data, 2023.

[36] Robert Ryan McCune, Tim Weninger, and Greg Madey.
Thinking like a vertex: a survey of vertex-centric
frameworks for large-scale distributed graph processing.
ACM Computing Surveys (CSUR), 48(2):1–39, 2015.

[37] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 18), Carlsbad, CA, 2018. USENIX Association.

[38] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Naiad:
A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[39] Derek G. Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. CIEL: A universal execution engine for
distributed data-flow computing. In Proceedings of
the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pages 113–126,
Berkeley, CA, USA, 2011. USENIX Association.

[40] Derek G Murray, Jiri Simsa, Ana Klimovic, and Ihor
Indyk. tf. data: A machine learning data processing
framework. arXiv preprint arXiv:2101.12127, 2021.

[41] D.G. Murray. A Distributed Execution Engine Sup-
porting Data-dependent Control Flow. University of
Cambridge, 2012.

[42] Qifan Pu, Shivaram Venkataraman, and Ion Stoica.
Shuffling, fast and slow: Scalable analytics on server-
less infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 193–206, 2019.

284 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://snap.stanford.edu/data

[43] Hang Qu, Omid Mashayekhi, Chinmayee Shah, and
Philip Levis. Decoupling the control plane from
program control flow for flexibility and performance
in cloud computing. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[44] Salvatore Sanfilippo. Redis: An open source, in-memory
data structure store. https://redis.io/, 2009.

[45] Vikram Sreekanti, Chenggang Wu Xiayue Charles
Lin, Jose M Faleiro, Joseph E Gonzalez, Joseph M
Hellerstein, and Alexey Tumanov. Cloudburst:
Stateful functions-as-a-service. arXiv preprint
arXiv:2001.04592, 2020.

[46] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati,
Joseph E Gonzalez, Joseph M Hellerstein, and Jose M
Faleiro. A fault-tolerance shim for serverless computing.
In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–15, 2020.

[47] Stephanie Wang, Eric Liang, Edward Oakes, Benjamin
Hindman, Frank Sifei Luan, Audrey Cheng, and Ion
Stoica. Ownership: A distributed futures system for
fine-grained tasks. In NSDI, pages 671–686, 2021.

[48] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[49] Haoran Zhang, Adney Cardoza, Peter Baile Chen,
Sebastian Angel, and Vincent Liu. Fault-tolerant and
transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1187–1204, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 285

https://redis.io/

A Artifact Appendix
Abstract
Our artifact includes a comprehensive guide and the source
code of the project that allows the evaluators to validate the
claims made in ExoFlow. Our artifact runs on Amazon AWS
without additional requirements or dependencies. Deploying
the code, performing the measurements, generating the plots,
and running the benchmarks depend on some third-party
frameworks including Anaconda, awscli, and Ray. Please refer
to our Github repository https://github.com/suquark/ExoFlow
for the latest instructions on reproducing the results.

Scope
The artifact allows the evaluators to validate the claims made
in the ExoFlow paper (mostly in the figures) and provides
a means to replicate the experiments described. The artifact
can be used to set up the necessary environment, execute the
main results, and perform microbenchmarks, thus providing
a comprehensive understanding of ExoFlow’s capabilities.

Contents
Our artifact includes a comprehensive guide designed to
assist the evaluator in setting up and running experiments
for the ExoFlow paper. It is organized into three primary
sections: Local Setup, Main Results, and Microbenchmarks.

The Local Setup section provides instructions to set up an
initial AWS EC2 instance. All subsequent experiments will
be conducted within that instance.

The Main Results section contains instructions to repro-
duce the main experiments (ML training pipelines, Stateful
serverless workflows, Online-offline graph processing)
presented in our paper. These experiments may take a
significant amount of time to run (>30 hours) for evaluation.
Therefore, we provide options for both batch running
experiments and testing individual data points.

The Microbenchmarks section includes instructions for run-
ning microbenchmarks, which take a shorter time to complete.

Hosting
You can obtain our artifacts from GitHub:
https://github.com/suquark/ExoFlow. The Github repository
may be updated later, but we will maintain clear and acces-
sible instructions about our artifacts in an easily identifiable
"README" file.

Requirements
ExoFlow is developed and tested on AWS, and we use some
AWS services as the baseline. Thus, an AWS account and
quota for certain experiments are required.

286 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/suquark/ExoFlow
https://github.com/suquark/ExoFlow

	Introduction
	Motivation
	Overview of recovery strategies
	Applications

	API
	Overview and requirements
	Model
	Guaranteeing exactly-once execution
	References

	Architecture
	Workflow execution
	Workflow recovery
	Execution backends

	Implementation
	Evaluation
	ML training pipelines
	Stateful serverless workflows
	Online-offline graph processing
	Microbenchmarks

	Related Work
	Discussion
	Conclusion
	Artifact Appendix

