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Workflows: Heterogeneous application pipelines

ETL augment train

Distributed ML training workflow
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Preprocessed 
dataset

The workflow system handles orchestration:
Execution + Failure recovery

Augmented 
dataset

- Automatic: Event-triggered execution, transparent failover
- High-performance: Scalability, minimize application overhead
- General: Interoperate with application code and third-party systems



Workflows: Heterogeneous application pipelines
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ETL augment train
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Augmented 
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Serverless microservices workflows

Distributed ML training workflow

- Data-intensive, offline

- Latency-sensitive, online

- Idempotent

- Affects external state

The workflow system handles orchestration:
Execution + Failure recovery

Tradeoff between execution vs. recovery (failover time) overhead.
Current workflow systems choose a single point on this tradeoff space.

→ Different workflow systems for different use cases.

Checkpointing:
+ Low performance overhead
- Re-execute more on failure → bad fit for 

online workloads
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Goal: Can we build a universal workflow system 
that enables a flexible choice over the tradeoff 

between recovery and performance?

Exoflow: Decoupling the unit of execution 
from the unit of recovery.

→ Need application semantics



Failure recovery for distributed workflows

Exactly-once semantics: Workflow output is equivalent to a failure-free execution.
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Failure recovery for distributed workflows

Exactly-once semantics: Workflow output is equivalent to a failure-free execution.

External state
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put(key, val)

“External” outputs
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B(a)

C(a)

D(b,c)

“Internal” outputs
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1. Tasks may be nondeterministic.
2. Tasks may have external outputs visible to others.

Failure recovery for distributed workflows

Exactly-once semantics: Workflow output is equivalent to a failure-free execution.
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External state

A()

B(a)

C(a)

D(b,c)

External outputs must be 
idempotent.task

Synchronously checkpoint 
output before beginning 
the next task.

checkpoint

Problems:



Nondeterminism and idempotence

What happens if we don’t synchronously checkpoint?

A()

nondeterministic
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B(a)

External state
put(key, val)

a b

Nondeterminism and idempotence
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D(b,c)A()

What happens if we don’t synchronously checkpoint?
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nondeterministic

Nondeterminism and idempotence

C(a)
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What happens if we don’t synchronously checkpoint?

Rollback of internal outputs: Drop previous outputs and rerun the task



External state
put(key, val)

Nondeterminism and idempotence
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What happens if we don’t synchronously checkpoint?

nondeterministic

Rollback of internal outputs: Drop previous outputs and rerun the task



nondeterministic
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Nondeterminism and idempotence
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D(b,c)
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External state

What happens if we don’t synchronously checkpoint?

Rollback of external outputs: ???



nondeterministic

External state
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Nondeterminism and idempotence
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Need to synchronize 
checkpoint before executing B.��

What happens if we don’t synchronously checkpoint?

Rollback of external outputs: ???



Current workflow systems use a one-size-fits-all approach
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Assume the worst:

1. Tasks may be nondeterministic.
2. Task may have external outputs.

Synchronously checkpoint outputs.
Simple and correct, but:

● Unnecessary depending on task semantics

● Slow if data is large



Exoflow: Decoupling the unit of execution 
from the unit of recovery.
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Goal: Can we build a universal workflow system 
that enables a flexible choice over the tradeoff 

between recovery and performance?



Exoflow: Key ideas

How to lower the execution 
overhead of recovery?

How to decouple
unit of recovery from

unit of execution?

Pass application data via 
first-class references

Choose recovery technique 
based on annotations for 

task semantics
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Avoid unnecessary 
checkpoint synchronization

Avoid unnecessary output 
materialization and/or copying



Related work

Current workflow systems couple unit of execution with unit of 
recovery.

- Execution unit: Task + idempotent APIs for external outputs
- Pick a single recovery method:

- Data workflows: sync checkpoint+retry (Airflow, Kubeflow)
- Serverless workflows: retry (AWS Step Functions), retry+rollback (Aft), or 

log+replay (Durable Functions, Beldi, BokiFlow)
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Systems that decouple unit of execution (messages) from unit of 
recovery (rollback prefix): Falkirk Wheel, DARQ.

- Lack references to abstract data movement
- Lack annotations to further improve recovery flexibility and efficiency



Challenge: Existing workflow systems must synchronously 
checkpoint all internal outputs
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Materialize outputs to 
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Solution: Use first-class references for more efficient data 
movement
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A()

B(a)

External storeC(a)

Key idea: Pass by reference lets the execution backend decide 
how to pass the physical value.

a

a

x

x

x_val

Share a 
physical copy



reserve(hotel)

reserve(flight)

commitOr
Abort(txn)beginTxn()

Challenge: Correctness for external outputs
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External state

Serverless workflow systems can provide external 
output idempotence, e.g., with logging.

If tasks are nondeterministic, must checkpoint outputs 
before downstream tasks start.



commitOr
Abort(txn)

Solution: Task annotations to capture semantics
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External state

External output that 
can be rolled back

Nondeterministic

Can skip or async 
checkpoint

beginTxn()
reserve(hotel)

reserve(flight)

2-phase locking



beginTxn()

Solution: Task annotations to capture semantics
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External output that
cannot be rolled backNondeterministic

reserve(hotel)

reserve(flight)

commitOr
Abort(txn)

Must synchronize 
checkpoint

External state



beginTxn()

Solution: Task annotations to capture semantics
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commitOr
Abort(txn)

update(hotel)

update(flight)

acquire(hotel)

acquire(flight)
External output that
cannot be rolled back

Can delay checkpoint 
until commitOrAbort

Nondeterministic Deterministic
No visible external output

External state

Key idea: Specify semantics before execution, lower overhead during.



Executor Executor

Exoflow Architecture
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Persistent storage

Workflow controller

Goals:

1. Scale recovery and execution independently.
2. Storage and execution should be pluggable.
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Exoflow Architecture
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Exoflow Architecture
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Workflow controller

A
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C

D

Sharded by workflow ID

Exoflow Architecture
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Persistent storage

A

B

C
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Executor Executor

Execution backends

Checkpoints for task 
outputs and references



consumer 1

consumer 2

Microbenchmark: Simulating an ETL workflow

generate 
1GB 

random 
Spark RDD
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consumer …

RDD

RDD

RDD

RDDref

RDDref

RDD
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(10% failure rate)

Benchmark: Microservice workflows1 on AWS Lambdas

33[1] Yu Gan et al. An open-source benchmark suite for microservices and their 
hardware-software implications for cloud & edge systems. ASPLOS 2019.



Benchmark: Microservice workflows1 on AWS Lambdas

34[1] Yu Gan et al. An open-source benchmark suite for microservices and their 
hardware-software implications for cloud & edge systems. ASPLOS 2019.

Exoflow
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Benchmark: Microservice workflows1 on AWS Lambdas
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Benchmark: Microservice workflows1 on AWS Lambdas

36[1] Yu Gan et al. An open-source benchmark suite for microservices and their 
hardware-software implications for cloud & edge systems. ASPLOS 2019.

commitOr
Abort(txn)beginTxn()

update(hotel)

update(flight)

acquire(hotel)

acquire(flight)

“+async” delays checkpoint 
until commitOrAbort

Exoflow



See the paper for…

Microbenchmarks and a wider variety of workloads

- Serverless transactions
- End-to-end ML pipeline
- Online-offline graph processing

Details on:

- References and annotations API
- Execution and recovery protocols
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Conclusion

Give applications flexibility in performance vs. recovery.

Code: github.com/suquark/exoflow

Email: siyuan@cs.berkeley.edu (Siyuan)
           swang@cs.berkeley.edu (Stephanie) 38

Exoflow: A universal workflow system that decouples 
the unit of execution from the unit of recovery.

First-class referencesTask annotations

http://github.com/suquark/exoflow
mailto:siyuan@cs.berkeley.edu
mailto:swang@cs.berkeley.edu

