
ExoFlow: A Universal Workflow System for
Exactly-Once DAGs

Siyuan Zhuang, Stephanie Wang, Eric Liang, Yi Cheng, Ion Stoica

1

Workflows: Heterogeneous application pipelines

ETL augment train

Distributed ML training workflow

2

tf.data

Preprocessed
dataset

Augmented
dataset

tf.data

Workflows: Heterogeneous application pipelines

ETL augment train

Distributed ML training workflow

3

Preprocessed
dataset

The workflow system handles orchestration:
Execution + Failure recovery

Augmented
dataset

- Automatic: Event-triggered execution, transparent failover
- High-performance: Scalability, minimize application overhead
- General: Interoperate with application code and third-party systems

Workflows: Heterogeneous application pipelines

commitOr
Abort(txn)

reserve(hotel)

reserve(flight)
beginTxn

Serverless microservices workflows

4

Distributed ML training workflow

ETL augment train

Preprocessed
dataset

Augmented
dataset

AWS Step
Functions

Azure Durable
Functions

commitOr
Abort(txn)

reserve(hotel)

reserve(flight)
beginTxn

Workflows: Heterogeneous application pipelines

5

ETL augment train

Preprocessed
dataset

Augmented
dataset

Serverless microservices workflows

Distributed ML training workflow

- Data-intensive, offline

- Latency-sensitive, online

- Idempotent

- Affects external state

- (mostly) Deterministic

- Nondeterministic

AWS Step
Functions

Azure Durable
Functions

- (mostly) Deterministic

- Nondeterministic

commitOr
Abort(txn)

reserve(hotel)

reserve(flight)
beginTxn

AWS Step
Functions

Azure Durable
Functions

Workflows: Heterogeneous application pipelines

6

ETL augment train

Preprocessed
dataset

Augmented
dataset

Serverless microservices workflows

Distributed ML training workflow

- Data-intensive, offline

- Latency-sensitive, online

- Idempotent

- Affects external state

The workflow system handles orchestration:
Execution + Failure recovery

Tradeoff between execution vs. recovery (failover time) overhead.
Current workflow systems choose a single point on this tradeoff space.

→ Different workflow systems for different use cases.

Checkpointing:
+ Low performance overhead
- Re-execute more on failure → bad fit for

online workloads

7

Goal: Can we build a universal workflow system
that enables a flexible choice over the tradeoff

between recovery and performance?

Exoflow: Decoupling the unit of execution
from the unit of recovery.

→ Need application semantics

Failure recovery for distributed workflows

Exactly-once semantics: Workflow output is equivalent to a failure-free execution.

8

Failure recovery for distributed workflows

Exactly-once semantics: Workflow output is equivalent to a failure-free execution.

External state

9

put(key, val)

“External” outputs

A()

B(a)

C(a)

D(b,c)

“Internal” outputs

a

a b

c

d

task

1. Tasks may be nondeterministic.
2. Tasks may have external outputs visible to others.

Failure recovery for distributed workflows

Exactly-once semantics: Workflow output is equivalent to a failure-free execution.

10

External state

A()

B(a)

C(a)

D(b,c)

External outputs must be
idempotent.task

Synchronously checkpoint
output before beginning
the next task.

checkpoint

Problems:

Nondeterminism and idempotence

What happens if we don’t synchronously checkpoint?

A()

nondeterministic

11

a

B(a)

External state
put(key, val)

a b

A() D(b,c)

C(a)❌

B(a)

External state
put(key, val)

a b

Nondeterminism and idempotence

12

D(b,c)A()

What happens if we don’t synchronously checkpoint?

C(a)

c’aa’

��

��
nondeterministic

nondeterministic

Nondeterminism and idempotence

C(a)

13

a

B(a)

External state
put(key, val)

a

A()��

��
a’ c’

D(b,c)

b

What happens if we don’t synchronously checkpoint?

Rollback of internal outputs: Drop previous outputs and rerun the task

External state
put(key, val)

Nondeterminism and idempotence

14

D(b,c)

C(a)

a_out

A()��

��
a’ c’

a

B(a)

ba’ b’
��

What happens if we don’t synchronously checkpoint?

nondeterministic

Rollback of internal outputs: Drop previous outputs and rerun the task

nondeterministic
C(a)

a_out

A()��

��
a’

a_out

B(a)

a’

��
put(key, val)

Nondeterminism and idempotence

15

D(b,c)

c’

b_outb’

External state

What happens if we don’t synchronously checkpoint?

Rollback of external outputs: ???

nondeterministic

External state

D(b,c)

c’

b_outb’

put(key, val)

Nondeterminism and idempotence

16

C(a)

a_out

A()��

��
a’

a_out

B(a)

a’

Need to synchronize
checkpoint before executing B.��

What happens if we don’t synchronously checkpoint?

Rollback of external outputs: ???

Current workflow systems use a one-size-fits-all approach

17

Assume the worst:

1. Tasks may be nondeterministic.
2. Task may have external outputs.

Synchronously checkpoint outputs.
Simple and correct, but:

● Unnecessary depending on task semantics

● Slow if data is large

Exoflow: Decoupling the unit of execution
from the unit of recovery.

18

Goal: Can we build a universal workflow system
that enables a flexible choice over the tradeoff

between recovery and performance?

Exoflow: Key ideas

How to lower the execution
overhead of recovery?

How to decouple
unit of recovery from

unit of execution?

Pass application data via
first-class references

Choose recovery technique
based on annotations for

task semantics

19

Avoid unnecessary
checkpoint synchronization

Avoid unnecessary output
materialization and/or copying

Related work

Current workflow systems couple unit of execution with unit of
recovery.

- Execution unit: Task + idempotent APIs for external outputs
- Pick a single recovery method:

- Data workflows: sync checkpoint+retry (Airflow, Kubeflow)
- Serverless workflows: retry (AWS Step Functions), retry+rollback (Aft), or

log+replay (Durable Functions, Beldi, BokiFlow)

20

Systems that decouple unit of execution (messages) from unit of
recovery (rollback prefix): Falkirk Wheel, DARQ.

- Lack references to abstract data movement
- Lack annotations to further improve recovery flexibility and efficiency

Challenge: Existing workflow systems must synchronously
checkpoint all internal outputs

21

A()

B(a)

Materialize outputs to
consumers

C(a)

a

a

Creates
unnecessary

copy

Solution: Use first-class references for more efficient data
movement

22

A()

B(a)

External storeC(a)

Key idea: Pass by reference lets the execution backend decide
how to pass the physical value.

a

a

x

x

x_val

Share a
physical copy

reserve(hotel)

reserve(flight)

commitOr
Abort(txn)beginTxn()

Challenge: Correctness for external outputs

23

External state

Serverless workflow systems can provide external
output idempotence, e.g., with logging.

If tasks are nondeterministic, must checkpoint outputs
before downstream tasks start.

commitOr
Abort(txn)

Solution: Task annotations to capture semantics

24

External state

External output that
can be rolled back

Nondeterministic

Can skip or async
checkpoint

beginTxn()
reserve(hotel)

reserve(flight)

2-phase locking

beginTxn()

Solution: Task annotations to capture semantics

25

External output that
cannot be rolled backNondeterministic

reserve(hotel)

reserve(flight)

commitOr
Abort(txn)

Must synchronize
checkpoint

External state

beginTxn()

Solution: Task annotations to capture semantics

26

commitOr
Abort(txn)

update(hotel)

update(flight)

acquire(hotel)

acquire(flight)
External output that
cannot be rolled back

Can delay checkpoint
until commitOrAbort

Nondeterministic Deterministic
No visible external output

External state

Key idea: Specify semantics before execution, lower overhead during.

Executor Executor

Exoflow Architecture

27

Persistent storage

Workflow controller

Goals:

1. Scale recovery and execution independently.
2. Storage and execution should be pluggable.

Executor Executor

Exoflow Architecture

28

Persistent storage

Workflow controller

A

B

C

D
Checkpoints for task
outputs and references

Executor Executor

Exoflow Architecture

29

Persistent storage

Checkpoints for task
outputs and references

Workflow controller

A

B

C

D

A

B

C

D

Sharded by workflow ID

Exoflow Architecture

30

Persistent storage

Checkpoints for task
outputs and referencesA

B

C

D

Executor ExecutorWorkflow controller

A

B

C

D

Sharded by workflow ID

Workflow controller

A

B

C

D

Sharded by workflow ID

Exoflow Architecture

31

Persistent storage

A

B

C

D

Executor Executor

Execution backends

Checkpoints for task
outputs and references

consumer 1

consumer 2

Microbenchmark: Simulating an ETL workflow

generate
1GB

random
Spark RDD

32

consumer …

RDD

RDD

RDD

RDDref

RDDref

RDD

RDDref

(10% failure rate)

Benchmark: Microservice workflows1 on AWS Lambdas

33[1] Yu Gan et al. An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. ASPLOS 2019.

Benchmark: Microservice workflows1 on AWS Lambdas

34[1] Yu Gan et al. An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. ASPLOS 2019.

Exoflow

reserve(hotel) reserve(flight) commitOr
Abort(txn)beginTxn()

Benchmark: Microservice workflows1 on AWS Lambdas

35[1] Yu Gan et al. An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. ASPLOS 2019.

reserve(hotel)

reserve(flight)

commitOr
Abort(txn)beginTxn()

Exoflow

Benchmark: Microservice workflows1 on AWS Lambdas

36[1] Yu Gan et al. An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. ASPLOS 2019.

commitOr
Abort(txn)beginTxn()

update(hotel)

update(flight)

acquire(hotel)

acquire(flight)

“+async” delays checkpoint
until commitOrAbort

Exoflow

See the paper for…

Microbenchmarks and a wider variety of workloads

- Serverless transactions
- End-to-end ML pipeline
- Online-offline graph processing

Details on:

- References and annotations API
- Execution and recovery protocols

37

Conclusion

Give applications flexibility in performance vs. recovery.

Code: github.com/suquark/exoflow

Email: siyuan@cs.berkeley.edu (Siyuan)
 swang@cs.berkeley.edu (Stephanie) 38

Exoflow: A universal workflow system that decouples
the unit of execution from the unit of recovery.

First-class referencesTask annotations

http://github.com/suquark/exoflow
mailto:siyuan@cs.berkeley.edu
mailto:swang@cs.berkeley.edu

