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Problems:

● Data movement

● Parallelism



Data movement: RPC model +distributed memory
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Distributed memory: Ability to 
reference data stored in the 
memory of a remote process.

● Application can pass by 
reference

● System manages data 
movement



Parallelism: RPC model +futures
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Driver Futures: Ability to reference data 
that has not yet been computed.

● Application can specify 
parallelism and data 
dependencies

● System manages task 
scheduling



Distributed futures

● Performance: System 
handles data movement and 
parallelism

● Generality: RPC-like interface 
(data is immutable). 
Application does not specify 
when or where computation 
should execute.
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Distributed futures today

Distributed futures are growing in popularity, with applications in a 
variety of domains:

● Data processing: CIEL, Dask

● Machine learning: Ray, Distributed PyTorch

Most systems focus on coarse-grained tasks (>100ms):

● A centralized master for system metadata.

● Lineage reconstruction (re-execution of the tasks that created 
an object) for fault tolerance.



A distributed futures system for fine-grained tasks

For generality, the system must impose low overhead.

Analogy: gRPC can execute millions of tasks/s. Can we do the 

same for distributed futures?

Goal: Build a distributed futures system that guarantees fault 
tolerance with low task overhead.

Enable applications that dynamically generate fine-grained 
tasks. → Check out the paper for more details!



Outline

1. An overview of distributed futures

2. System requirements and challenges

3. Ownership: Achieving fault tolerance without giving up 

performance

4. Evaluation



Distributed futures introduce shared state
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Multiple processes refer to the same value.

Distributed futures introduce shared state
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Dereferencing a distributed future requires coordination.

1. The process that specifies how the 
value is created and used.

2. The process that creates the value.

3. The process that uses the value.

4. The physical location of the value.



Requirements for dereferencing a value:

● Retrieval: The location of the value

● Garbage collection: Whether the value is referenced

Requirements in the presence of failures:

● Detection: The location of the task that returns the value.

● Recovery: A description of the task and its dependencies.

● Persistence: Metadata should survive failures.

System requirements



Requirements for dereferencing a value:

● Retrieval: The location of the value

● Garbage collection: Whether the value is referenced

Requirements in the presence of failures:

● Detection: The location of the task that returns the value.

● Recovery: A description of the task and its dependencies.

● Persistence: Metadata should survive failures.

Challenge: Recording this metadata, while ensuring 
latency and throughput

for dynamic and fine-grained tasks.

System requirements



Existing solutions

Architecture Coordination Performance

Leases 
(decentralized)

Workers coordinate. For 
example, use leases to 
detect a task failure.

Asynchronous 
metadata updates. 
Scale by adding more 
worker nodes. 

Centralized 
master

Master records all 
metadata updates and 
handles all failures.

Can scale through 
sharding, but high 
overhead due to 
synchronous updates.
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Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of 
a distributed futures application.
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1. Task graphs are hierarchical.

2. A distributed future is often 
passed within the scope of the 
caller.



Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of 
a distributed futures application.

1. Task graphs are hierarchical.

Insight: By leveraging the structure of distributed futures applications, 
we can decentralize without requiring expensive coordination.

2. A distributed future is often 
passed within the scope of the 
caller.
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Our approach: Ownership

Insight: By leveraging the structure of distributed futures applications, 
we can decentralize without requiring expensive coordination.

Architecture Failure handling Performance

Ownership:
The worker that 

calls a task owns 
the returned 

distributed future.

Each worker is a 
“centralized master” for 
the objects that it owns.

No additional writes on 
the critical path of task 
execution. Scaling 
through nested 
function calls.



Ownership: Challenges

● Failure recovery

○ Recovering a lost worker

○ Recovering a lost owner

● Garbage collection and memory safety

● Handling first-class distributed futures, i.e. distributed futures that 
leave the caller’s scope



Ownership: Challenges

● Failure recovery

○ Recovering a lost worker

○ Recovering a lost owner

● Garbage collection and memory safety

● Handling first-class distributed futures, i.e. distributed futures that 
leave the caller’s scope

→ Check out the paper for more details!



Node 3

Object
Store

Worker

Task scheduling

Node 2

Object
Store

Worker

Node 1

Worker

Obj Task Val Loc

C Y

A

XB

A

Obj Task Val Loc

Y C(X)

Obj Task Val Loc

X B()



Node 3

Object
Store

Worker

Task scheduling

Node 2

Object
Store

Worker

Node 1

Worker

Obj Task Val Loc

X B()

Y C(X)

A

CX Y

A

B

B

2

A task’s pending location is written locally at the owner.

N21



Node 3

Object
Store

Worker

Distributed memory management

Node 2

Object
Store

Worker

Node 1

Worker

Obj Task Val Loc

X B()

Y C(X)

A B

X: N24

X

3

C Y

A

XB

*X N25

Owner tracks locations of objects stored in 
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Reference holders only need to 
check whether the owner is alive.
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Evaluation: Online video processing
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Evaluation: Online video processing (60 videos)

Centralized = Ray modified with writes to a centralized 
metadata store



Evaluation: Online video processing (60 videos)

Latency with ownership is lower because each video 
has a different owner.



Evaluation: Online video processing with failures

Recovery when the owner is intact, with lineage 
reconstruction.



Evaluation: Online video processing with failures

Recovery from owner failure using application-level 
checkpoints to bound re-execution.
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https://docs.google.com/file/d/1UBxww8ar6ZQ_9qKErzQddoSeXjAZnvY4/preview


Conclusion

Key insight: Decentralize system operations according to the 

application structure.

Ownership: A decentralized system for distributed futures that 

achieves transparent recovery and automatic memory management.

Enables data-intensive applications with fine-grained tasks.

github.com/stephanie-wang/ownership-nsdi2021-artifact
github.com/ray-project/ray
Email: swang@cs.berkeley.edu

https://github.com/stephanie-wang/ownership-nsdi2021-artifact
https://github.com/ray-project/ray/

