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1 Introduction

RPC has been remarkably successful. Most distributed ap-
plications built today use an RPC runtime such as gRPC [3]
or Apache Thrift [2]. The key behind RPC’s success is the
simple but powerful semantics of its programming model.
In particular, RPC has no shared state: arguments and return
values are passed by value between processes, meaning that
they must be copied into the request or reply. Thus, argu-
ments and return values are inherently immutable. These
simple semantics facilitate highly efficient and reliable imple-
mentations, as no distributed coordination is required, while
remaining useful for a general set of distributed applications.
The generality of RPC also enables interoperability: any ap-
plication that speaks RPC can communicate with another
application that understands RPC.
However, the lack of shared state, and in particular a shared

address space, deters data-intensive applications from using
RPC directly. Pass-by-value works well when data values
are small. When data values are large, as is often the case
with data-intensive computations, it may cause inefficient
data transfers. For example, if a client invokes 𝑥 = 𝑓 () then
𝑦=𝑔(𝑥), it would have to receive 𝑥 and copy 𝑥 to𝑔’s executor,
even if 𝑓 executed on the same server as 𝑔.
There has been more than one proposal to address this
problem by introducing a shared address space at the ap-
plication level [14]. The common approach is to enable an
RPC procedure to store its results in a shared data store and
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Figure 1: A single “application” actually consists of many
components and distinct frameworks. With no shared
address space, data (squares) must be copied between
different components.
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Figure 2: Logical RPC architecture: (a) today, and (b) with a
shared address space and automatic memory management.

then return a reference, i.e., some metadata that acts as a
pointer to the stored data. The RPC caller can then use the
reference to retrieve the actual value when it needs it, or
pass the reference on in a subsequent RPC request.
While a shared address space can eliminate inefficient or
unnecessary data copies, doing it at the application level
places a significant burden on the application programmer
to manage the data. For example, the application must decide
when some stored data is no longer used and can be safely
deleted. This is a difficult problem, analogous to manual
memory management in a non-distributed program.
Thus, instead of using RPC directly, distributed data-intensive

applications tend to be built on top of specialized frameworks
like Apache Spark [43] for big data processing or Distributed
TensorFlow [6] for machine learning. These frameworks han-
dle difficult systems problems such as memory management
on behalf of the application. However, with no common foun-
dation like RPC, interoperability between these frameworks
is a problem. Resulting applications resemble Figure 1, where
some components communicate via RPC and others commu-
nicate via a framework-specific protocol. This often results
in redundant copies of the same data siloed in different parts
of an application.
We argue that RPC itself should be extended with a shared
address space and first-class references. This has two appli-
cation benefits: 1) by allowing data-intensive applications to
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be built directly on RPC, we promote interoperability, and
2) by shifting automatic memory management to a common
system, we can reduce duplicated work between specialized
frameworks. Indeed, we are already starting to see this re-
alized by the latest generation of data systems, including
Ciel [27], Ray [26], and Distributed PyTorch [4]. All imple-
ment an RPC-like interface with a shared address space. Our
aim is to bring attention to the common threads and chal-
lenges of these and future systems.
At first glance, introducing a shared address space to RPC

seems to directly contradict the original authors, who argued
that doing so would make the semantics more complex and
the implementation less efficient [12]. We believe, however,
that these concerns stem not from a shared address space
itself, but rather from supporting mutability. By adding an
immutable shared address space, we can preserve RPC’s orig-
inal semantics while enabling data-intensive applications.

Immutability simplifies the system design, but what con-
cretely would supporting a shared address space require?
To answer this question, we first consider the design of RPC
systems today. While RPC is often assumed to be a point-
to-point communication between the caller and a specific
callee, today’s RPC systems look more like Figure 2a: a load
balancer schedules an RPC to one of several servers (which
can themselves act as an RPC client). Even the original au-
thors of RPC provided such an option, known as dynamic
binding [12]. Extending this architecture with an immutable
shared address space would mean: (1) augmenting each “ex-
ecutor” with a local data store or cache, and (2) enhancing
the load balancer to be memory-aware (Figure 2b).
In the rest of this paper we explain what it means to add
first-class support for immutable shared state and pass-by-
reference semantics to RPC.We give examples of applications
that already rely on this interface today. Then, drawing from
recent data systems, we discuss the challenges and design
options in implementing such an interface.

2 API

There are two goals for the API: (1) It should preserve the
simple semantics of RPC, and (2) It should allow the system
to manage memory on behalf of the application. We use im-
mutability to achieve the former. It is the simplest approach
because the system does not need to define and implement a
consistency model as part of the API. Meanwhile, the applica-
tion remains free to implement mutability with local state.
We also briefly remark on the need for parallelism. Par-
allelism is of course critical to the performance of many
data-intensive applications. It has already been addressed in
part by the addition of asynchrony to RPC, which is why we
focus here on the problem of memory management instead.

Ref r A first-class type. Points to a value which may not
exist yet and may be located on a remote node.

shared(Ref
r)→SharedRef

Returns a copy of r that can be shared with another
client by passing to an RPC.

f.remote(Ref
r) → Ref

Invoke f. Pass the argument by reference: the
executor receives the dereferenced argument.
Returns a Ref pointing to the eventual reply.

f.remote(
SharedRef r)
→ Ref

Invoke f. Pass the argument by shared reference: the
executor receives the corresponding Ref. Returns
a Ref pointing to the eventual reply.

get(Ref r) →
Val

Dereference r. This blocks until the underlying
value is computed and fetched to local memory.

delete(Ref r) Called implicitly when r goes out scope. The client
may not use r in subsequent API calls.

Table 1: A language-agnostic pass-by-reference API.

A common asynchronous API has each RPC invocation
immediately return a future, or a pointer to the eventual re-
ply [10, 25]. In Section 3, we explain how this in conjunction
with a reference, i.e. a pointer to a possibly remote value, gives
the system insight into the application, by giving a view of
the client’s future requests. We will assume a futures API but
focus primarily on the introduction of first-class references.
First-class references. A first-class primitive is one that
is part of the system API. For references, it means that the
RPC system is involved in the creation and destruction of
all clients’ references. Compared to the original RPC pro-
posal [12], there are three key differences in the API (Table 1):
First, all RPC invocations return a reference (of type Ref).

The caller can dereference an RPC’s reply when it needs it
by calling get. We choose to have all RPC invocations return
a reference so that the application never needs to decide
whether an executor should return by value or by reference.
Instead, this is decided transparently by the system. Refer-
ences are logical, so a system implementation can choose to
pass back all replies by value, by reference, or both, e.g., de-
pending on the size of the reply. A future extension to the API
could allow applications to control this decision, if needed.
Second, the client can pass a reference as an RPC argument,

in addition to normal values. There are two options for deref-
erencing Ref arguments. If a function with the signature
f(int x) is passed a Ref argument, the system implicitly
dereferences the Ref to its int value before dispatching f to
its executor. Thus, the executor never sees the Ref. A func-
tion with the signature f(Ref r) would instead share the
Ref argument passed by its caller, meaning that the execu-
tor can pass the Ref to another RPC or call get. The caller
specifies the latter behavior by passing a SharedRef to f.
The developer must consider certain tradeoffs in this deci-

sion. With implicit dereferencing, the callee cannot begin ex-
ecution until all of its Ref arguments are local. Implicit deref-
erencing also prevents efficient delegation: the callee does not
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see the Ref, so it would have to copy the value to pass it to an-
other RPC. On the other hand, with SharedRefs, the system
has less visibility into how the callee will use the received
Ref, i.e., whether and when it will call get. This has implica-
tions on optimizations for memory management (Section 3).
Third, a client uses the delete call to notify the system

when it no longer needs a value. Note that this is implicit: it is
not exposed to the application and should be called automati-
cally by the language bindings when a Ref goes out of scope.
This is important for memory safety, as we will see next.

3 Automatic memory management

First-class references allow the system to manage distributed
memory on behalf of the application. For contrast, we will
consider an application-level shared address space implemen-
tation that combines a key-value store with an existing RPC
system. The application uses keys as references. We will call
these raw references because their operations are not encap-
sulated by the RPC API. Thus, the system is fully or partially
unaware of operations such as reference creation or deletion.
We consider four key operations in memory management:
Allocation. The minimum requirement is the ability to al-
locate memory without specifying where. This is analogous
to malloc, which handles problems such as fragmentation
in a single-process program. This requirement is easily met
by both raw and first-class references, as key-value stores
do not require the client to specify where to put a value.
Reclamation. Reclaiming memory once there are no more
references is a key requirement for applications with non-
trivial memory usage. This is challenging in a distributed
setting. It requires a fault-tolerant protocol for distributed
garbage collection [33]. A key benefit of first-class references
is that the API allows the system to implement this protocol
on behalf of the application because all reference creation and
destruction operations are encapsulated in the API.
In contrast, it is virtually impossible for the system to de-
termine whether the application still holds a raw reference,
analogous to determining whether a raw pointer is still in
scope in a single-progress program. The problem is that raw
references allow and even encourage the application to cre-
ate a reference at any time, e.g., by hard-coding a string key.
Thus, correctness requires manual memory management.
Movement. The primary motivation of pass-by-reference
semantics is to eliminate unnecessary distributed data move-
ment. The use of raw references shifts the responsibility of
data movement to the system: the application has to spec-
ify when to move data (i.e., by calling get), but not how or
where. The use of first-class references in combination with
futures allows the system to also decide when to move data.
By coordinating data movement with request scheduling,
the system has greater control in optimizing data movement.

For example, a key system feature is data locality: when
the data needed by a request is large, the system can choose
an executor near the data rather than moving the data to the
executor. This cannot be implemented with a put/get key-
value store interface. It is straightforward with first-class
references because each request specifies the Refs that it
needs to the system, before placement.
Even if a key-value store were extended for data locality,

we would still miss out on valuable optimizations, such as
pipelining of I/O and compute. For example, if an executor had
incoming requests 𝑓 () and 𝑔(𝑥), the system could schedule
𝑓 () while fetching 𝑥 in parallel. The use of futures enables
this optimization for requests from the same client, by allow-
ing a client to make multiple requests in parallel.
Thus, the Ref API gives the system visibility into each re-
quest’s data dependencies, affording unique opportunities
in optimizing data movement with request scheduling. This
also motivates our choice to expose two options for argu-
ment dereferencing, either implicit (by passing a Ref) or
explicit (by passing a SharedRef). Much like raw references,
there is ambiguity around if and when an executor will deref-
erence a SharedRef, which affects the usefulness of system
optimizations. For example, a request with SharedRef argu-
ments may simply pass the references to another RPC instead
of dereferencing them directly. In this case, scheduling the
request according to data locality brings no benefit.
Memory pressure. To improve throughput, a single server
machine generally executes multiple RPC requests concur-
rently. If the total memory footprint is higher than the ma-
chine’s capacity, at least one process will be killed or swapped
to disk by the OS, incurring high overheads [5, 37]. For exam-
ple, with pure pass-by-value, the scheduler would not be able
to queue new requests once the local memory capacity was
reached. With raw references, each request would contain
only references to its dependencies, so additional requests
could be queued. However, this only defers the problem: the
concurrent requests would still overwhelm the machine once
they began execution and called get on their dependencies.
A memory-aware scheduler can ensure stability and per-

formance by coordinating the memory usage of concurrent
requests. This is true independent of a shared address space.
However, a key challenge is determining each request’s mem-
ory requirements. One could require developers to specify
memory requirements, but in practice, this is very difficult.
First-class references give the system rich information about

each request’s memory requirements,with no developer effort.
This is again because the scheduler has visibility into each re-
quest’s dependencies. Thus, the scheduler could for example
choose a subset of requests for which to fetch the dependen-
cies, based on dependency size and the available memory.
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Thus, only a system with first-class references can ade-
quately handle reclamation, movement, and memory pres-
sure for the application. In fact, we argue that RPC systems
with a shared address space should not expose raw references
to the application. If they do, it is at the developer’s risk.
4 Is the API enough for applications?

The latest generation of distributed data systems shows us
how valuable automatic memory management is to applica-
tions. We argue that these systems are in fact RPC systems
with a shared address space (Table 2), even if they may not
call themselves as such. All have a function invocation-like
interface. Most use an immutable shared address space, and
most use first-class references.
Despite the many API commonalities, these systems were

originally proposed for a wide range of application domains,
from data analytics to machine learning. We argue that the
API proposed in Table 1 is sufficiently general because it can
be used to express any application targeted by one of the
systems in Table 2. To illustrate this, we will describe three
concrete applications (Figure 3) that drove the development
of some of these systems.
Data processing. Ciel is a universal execution engine for
distributed dataflow processing that uses an API virtually
identical to that proposed [27]. Unlike data processing sys-
tems such as Apache Hadoop [40] and Spark [43], which im-
plement a data-parallel interface, Ciel uses task parallelism:
each task is a function that executes on a data partition. For
example, Figure 3a shows a simple map-reduce application
with two tasks per stage. Ciel programs can also have nested
tasks, similar to an RPC executor that itself invokes RPCs.
Ciel shows equal or better performance than Hadoop for

synchronous data processing [27]. Futures allow the system
to gain a full view of the dataflow graph before scheduling.
First-class references enable management of data movement,
e.g., by exploiting data locality. Finally, Ciel shows that its
interface is also general enough for applications that can-
not be expressed easily as data-parallel programs, such as
dynamic programming problems [27].
Reinforcement learning. Ray [26] uses an API with fu-
tures and references to support emerging AI applications
such as reinforcement learning (RL). RL requires a combina-
tion of asynchronous and stateful computation [30]. A typical
algorithm proceeds in asynchronous stages: a driver sends
the current model to a number of train tasks (Figure 3b).
The train tasks are stateful because the executors hold an
environment simulator in local memory.
Futures allow the driver to process the train results asyn-

chronously1. First-class references are used to reduce redun-
dant data copies when sending the model weights to the
1Ray extends the API proposed in Table 1 with a wait call that returns the
first ready reference, similar to get with a timeout.

map1

map2

reduce1

reduce2

driver

(a) Data processing (b) RL

ParamServer
  .get

ParamServer
  .apply

train

(c) Parameter server
# (a) MapReduce.
map_out = [map.remote(i) for i in range(m)]
out = [reduce.remote(map_out[i][j] for i in range(m))

for j in range(r)]
get(out)

# (b) RL, one round.
refs = [train.remote(i, weights_ref) for i in range(3)]
while ready_ref = wait(refs):

result = get(ready_ref)
# ... apply the result ...

# (c) Parameter server, one round.
weights_ref = ps.get.remote()
refs = [train.remote(i, weights_ref) for i in range(3)]
ps.apply.remote(refs)

(d) Pseudocode using a pass-by-reference API (Table 1).
Figure 3: Applications for a pass-by-reference API. Legend:
gray circle is the client, other circles are RPCs, dashed
arrows are RPC invocation, solid squares are data, solid
arrows are dataflow.

train tasks (Figure 3b). Ray’s distributed object store op-
timizes this with: (1) shared memory to eliminate copies
between executors on the same machine, and (2) a protocol
for large data transfer between machines [26].
Parameter server. A primary motivation for Distributed
PyTorch [4] and Distributed TensorFlow [7] is model train-
ing. A standard algorithm is synchronous stochastic gradient
descent (SGD), using a parameter server to store the model
weights [15, 23] (Figure 3c). In each round, each worker gets
the current weights from the parameter server, computes a
gradient, and sends the gradient to the parameter server to be
aggregated. Synchrony is important to ensure that gradients
are not stale [15].
Similar to Figure 3b, first-class references allow the system

to optimize the broadcast of the current weights. The driver
can also use references to concisely coordinate each round
without having the data local (Figure 3d).
Both Distributed PyTorch and Distributed TensorFlow use
an API similar to Table 1, extended with higher-level prim-
itives specific to machine learning, e.g., optimization strate-
gies [6, 24]. Distributed PyTorch allows mutable memory,
and Distributed TensorFlow requires the developer to specify
a static graph instead of using futures2.
2Distributed TensorFlow v2 supports eager execution, which produces a
dynamic graph, similar to futures.
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System Applications Immutable First-class refs Futures Shared refs Stateless fns Stateful fns

Ciel [27] Data processing ✓ ✓ ✓ ✓ ✓ ×
Ray [26] RL, ML ✓ ✓ ✓ ✓ ✓ ✓
Dask [36] Data analytics ✓ ✓ ✓ × ✓ ✓/×
Distributed PyTorch [4] ML × ✓ ✓ ✓ × ✓
Distributed TensorFlow [6] ML ✓ ✓ × × ✓ ✓
Cloudburst [38] Stateful serverless × ✓/× ✓ ✓ ✓ ✓

Table 2: RPC-like systems that expose a shared address space. Each system was designed for the listed application domain.

Summary. Given the overlap in API, we believe that these
systems have encounteredmany of the same challenges in au-
tomatic memory management. The result is duplicated effort
and inconsistent feature support. For example, CIEL handles
memory pressure by using a disk-based object store, but
has no method of reclamation [28]. Distributed PyTorch im-
plements distributed reference counting for reclamation but
throws out-of-memory errors to the application [4]. Thus, we
ask: how can we create a common foundation for data-intensive
applications that is simple, efficient, and general enough?

5 System Implementation

In practice, a shared address space needs a distributed ob-
ject store. We recommend adding in-memory storage to each
server, co-located with the “executor” (Figure 2b). For exam-
ple, this could be a cache backed by a key-value store. In this
case, why not use a key-value store directly? We argue that
to realize the benefits of pass-by-reference, we must co-design
the scheduler and memory management systems. We discuss
this in terms of the key memory management operations:
Reclamation. Reclamation must ensure memory safety, i.e.
referenced values should not be reclaimed, and liveness, i.e.
values that are not referenced should eventually be reclaimed.
A common approach is reference counting, to avoid the need
for global pauses [33]. Concretely, this means that for each
Ref, the system tracks: (1) whether the caller still has the
Ref in scope, and (2) whether any in-flight requests have
the Ref as an argument. The latter requires cooperation
between memory management and the scheduler. Shared
references (Section 2) further require the system to track (3)
which other clients have the Ref in scope.
Movement. Co-design of scheduling and memory manage-
ment gives the system greater control over data movement
and sharing within the distributed object store. For example,
a key-value store can improve data access time for skewed
workloads by replicating a hot key. However, it must do this
reactively, according to how often a key is used and where
the keys are needed [9]. In contrast, a co-designed system
could simultaneously schedule the consumers of some data
with a broadcast protocol, e.g., using a dynamicmulticast tree.
There is also much previous work here that could be lever-
aged, including collective communication fromHPC [19] and
peer-to-peer networking systems such as BitTorrent [34].

Memory pressure. First-class references allow the system
to control how much memory is used by the arguments of
concurrent requests (Section 3). However, this is not enough
to ensure available memory, as the size of a request’s outputs
are not known until run time. Thus, barring user annotations,
the system must have a method for detecting and handling
when additional memory is required by the application.
The system could: 1) throw an out-of-memory error, 2) kill
and re-schedule a memory-hungry request, or 3) swap out
memory (at an object granularity) to external storage. Op-
tions 1 and 2 are simple but cannot guarantee progress. Op-
tion 3, a standard feature in big data frameworks [35, 40, 43],
guarantees progress but can impose high performance over-
heads. In some cases, simply limiting request parallelism can
guarantee progress without having to resort to swapping.
One challenge is in designing a scheduler that can efficiently
identify, avoid, and/or handle out-of-memory scenarios.

5.1 Fault tolerance

Failures are arguably the most complex part of introducing
a shared address space, as it implies that a reference and
its value can have separate failure domains. We give some
options in relation to current RPC failure handling.
A minimal RPC implementation guarantees at-most-once
semantics: the system detects failures for in-flight requests
and returns an error to the application. The difference with
pass-by-reference is that an error can be thrown after the
original function has completed, as failures can also cause
the value to be lost from the distributed object store.
RPC libraries often support automatic retries, or at-least-

once semantics. This is enough to transparently recover idem-
potent functions. The key difference in a pass-by-reference
API is that, in addition to the failed RPC, any arguments
passed by reference may also require recovery. Many sys-
tems in Table 2 support this through lineage reconstruc-
tion [26, 27, 36], replication [41], and/or persistence. Com-
pared to pass-by-value RPC, these methods require storing
and maintaining additional system state, as an object may
be referenced well past the RPC invocation that created it.
Finally, for functions with side effects, application correct-

ness may require the system to provide exactly-once seman-
tics. The challenges here are much the same as with RPC
without a shared address space [21].
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6 Discussion

6.1 Interoperability

Data interoperability is an increasingly relevant problem
with emerging solutions in a variety of settings, such as
Weld [32] for parallelizing data analytics across libraries,
Apache Arrow [1] for serialization of columnar data across
programming languages, and (pass-by-value) RPC and REST
for communication between distributed microservices [29].
We are interested in interoperability between distributed ap-
plications that share large data. Previous work provides key
pieces to a solution: RPC provides communication while
Apache Arrow provides zero-copy deserialization and lan-
guage interoperability. However, we lack such a common
solution for distributed memory management.
Many frameworks have solved distributed memory man-

agement for a single domain and within a single application.
For example, Apache Spark [43] manages memory for big
data applications, while Distributed TensorFlow [7] manages
memory for machine learning applications.
However, combining applications across different domains
is inevitable, and exchanging data between any two frame-
works is a nontrivial problem [17]. For example, a common
use case today is loading data that was preprocessed on an
Apache Spark cluster into a Distributed TensorFlow cluster
for model training or inference [17]. This adds operations
complexity, as the user must manage two different clusters
and their data exchange. There is also a performance cost be-
cause exchanged datamust be copied ormaterialized, often to
some distributed file system. In fact, these problems spurred
the multiperson multiyear effort Project Hydrogen [42], a
connector for Spark and deep learning frameworks.
As application use cases continue to evolve, we predict
that the boundaries between applications will become in-
creasingly blurred and that these scenarios will become in-
creasingly common. The developer effort required to build
and maintain a connector for every pair of applications or
frameworks will become intractable.
Thus, our challenge is this: How can we factor out dis-
tributed memory management into a single system? We
already take this for granted for small data, with RPC and
REST as the de facto standards for building microservice
APIs [29]. Can we develop such a standard for large data,
too? Here, we discuss some of the practical challenges in
adopting such a standard, compared to pass-by-value RPC.
Integration. How should applications integrate with a pass-
by-reference RPC system? The option that we’ve primar-
ily discussed is to develop specialized frameworks such as
Apache Spark directly on the system. The advantages are re-
duced effort in managing distributed memory and execution,
as well as straightforward interoperability with other appli-
cations or frameworks built with pass-by-reference RPC.

The challenge with this approach is in achieving the same
performance as a custom memory and task management
system that is designed for the specific application domain.
An interesting direction is in determining what information
is needed for different application domains and whether or
how that can be specified to the system we propose.
The other option is a shallow integration: the application
manages its own memory and execution but uses pass-by-
reference RPC to communicate data to other applications.
This could be useful for existing frameworks where reimple-
menting with pass-by-reference RPC is impractical.
The challenge with this approach is ensuring full flexibil-
ity for the application while still realizing the performance
and interoperability benefits of pass-by-reference RPC. The
simplest option that provides full flexibility is to have the
application exchange data with the RPC system by copy-
ing, but this has the same overheads as pass-by-value RPC.
Thus, we must carefully design the interface and division
of responsibilities between the application and the RPC sys-
tem. Integrating a custom object store implementation, for
example, may require an API and support for plugins.
Decoupling applications. A key advantage of RPC is that
clients and servers are decoupled, i.e., they share no state
and can only communicate by passing values. This simplifies
the development and deployment of applications such as
microservices [29].
With pass-by-reference, one RPC application would create
a reference, then pass it to another RPC application that
dereferences it. Thus, the applications are coupled for at least
the lifetime of the reference. Unlike pass-by-value RPC, this
can extend past the duration of the RPC invocation, e.g., if
the server saves the Ref in its local state.
One challenge in system design is in keeping application

development and deployment simple. Immutability prevents
consistency issues, but it is not a panacea. For example, how
should failures in one application, say the executor that was
supposed to produce a value, affect the other? What is re-
quired to connect two applications that use different recovery
semantics for data passed by reference?

6.2 The role of programming languages

Historically, fully transparent distributed memory systems
(e.g., DSM) have proven impractical. We believe that sys-
tems must at least partially expose distributed memory to
programmers. Memory management should be automatic,
but developers must be aware of how to best use references.
Much like non-distributed programming models, the flexibil-
ity of RPC makes this challenging, as there are many ways
to write the same program. Yet, flexibility is also a primary
reason for RPC’s success.
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In the future, we also believe there are opportunities in
leveraging techniques from programming languages to im-
prove memory management and even some of the interop-
erability issues described here. For example, the concept of
ownership [16] popularized by the language Rust could pro-
vide a solution to the problem of tight coupling between
applications that share a reference.
6.3 Related abstractions for distributed memory

Distributed shared memory [31] (DSM) provides the illusion
of a single globally shared address space across physically
distributed threads. Our RPC proposal has two differences:
(1) shared memory is immutable, and (2) the use of futures
and first-class references. The former decision is informed
by the historical difficulties of implementing DSM in prac-
tice [11, 20, 22, 31]. The latter is valuable for capturing richer
application semantics that enable automatic memory man-
agement (Section 3).
Some systems have introduced novel and rich abstractions
to manage consistency for mutable shared state [8, 18, 41].
For example, FaRM [18] uses distributed transactions while
Anna [41] offers a range of consistency levels. We chose a
minimal approach that preserves the pass-by-value seman-
tics of RPC and avoids imposing a consistency model. This
does not preclude developers from using or implementing
other consistency models at the application level.
Other systems introduce new abstractions for accessing re-

mote memory, including distributed data structures [13] and
primitives for a single “object” [37]. These are fundamentally
different approaches to programming distributed memory. In
particular, we call for tightly coupling the notion of functions
with remote memory (Section 2) and co-designing function
scheduling and memory management (Section 5).
Section 4 summarizes modern system manifestations of

pass-by-reference RPC. Many have handled some but not all
of the problems in memory management discussed in Sec-
tions 3 and 5. None have fully addressed the challenges of in-
teroperability (Section 6.1), which is unsurprising given that
it was not their explicit goal. For example, the concept of own-
ership in the system Ray handles automatic memory reclama-
tion and recovery, but requires all references to be coupled
to their creator, which is a problem for interoperability [39].
6.4 Conclusion

Memory management is a key part of distributed systems.
The goal of this work was to extract a common API that has
emerged in recent data-intensive systems that could be used
to factor out problems in distributed memory management.
The result is pass-by-reference RPC. We believe that pass-by-
reference RPC has the potential to act as a unified abstraction
for “virtual memory” in distributed applications, enabling in-
teroperability and faster development of future applications.
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