
Logical Memory Pools:
Flexible and Local DisaggregatedMemory

Emmanuel Amaro
VMware Research

StephanieWang
UC Berkeley

Aurojit Panda
NYU

Marcos K. Aguilera
VMware Research

Abstract
We propose logical memory pools, a memory disaggregation
architecture for the emerging Compute Express Link (CXL)
technology in datacenters. The key idea is to create amemory
pool by carving out parts of the local memory in each server,
rather thanusingaphysicalmemorypool that is separate from
servers. Logical pools provide significant benefits over phys-
ical pools, namely, lower cost, support for near-memory com-
puting without extra hardware, and flexibility on designating
whethermemory ispartof thememorypoolornot.Wedemon-
strate that logical pools can execute workloads that are unfea-
sible in physical pools, and that its faster access leads to better
performance. Realizing logicalmemorypools posesfivemajor
challenges, whichwe believe can be overcome. Given the ben-
efits of logical pools, we believe the CXL community should
refocus efforts on logical, rather than physical memory pools.

CCS Concepts
•Networks→Network architectures;Data center net-
works; •Computer systems organization→Distributed
architectures;

ACMReference Format:
Emmanuel Amaro, StephanieWang, Aurojit Panda, andMarcos K.
Aguilera. 2023. Logical Memory Pools: Flexible and Local Disaggre-
gatedMemory. In The 22nd ACMWorkshop on Hot Topics in Networks
(HotNets ’23),November 28–29, 2023, Cambridge,MA,USA.ACM,New
York, NY, USA, 8 pages. https://doi.org/10.1145/3626111.3628201

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 979-8-4007-0415-4/23/11. . . $15.00
https://doi.org/10.1145/3626111.3628201

shared
… C

XL
 s

w
itc

h

…

private
private
private

private

Logical Memory Pool

a) b)
private shared

mem
mem

mem

mem

C
XL

 s
w

itc
h

Physical Memory Pool

Figure 1: a) A PhysicalMemory Pool deployment. b) A Logical
Memory Pool deployment.

1 Introduction
Memory disaggregation, which moves memory to pools ac-
cessible frommultiple servers, improves memory utilization
and reduces the cost of ownership of memory in data cen-
ters [2, 18, 38, 39, 43, 45].Most priorwork in this space focuses
on softwarememory disaggregation, where software explic-
itly issues IOs to transfer data to and from the memory pool
(e.g., using RDMA). Recently, a faster approach—hardware
memory disaggregation—is gaining traction due to the Com-
pute Express Link (CXL) standard. CXL allows hosts to con-
nectmemory through thePCIebus—including fabric-attached
memory [30]—and processors can directly access such mem-
ory. Hardwarememory disaggregation is faster than software
because processors access memory using loads and stores,
rather than IO requests. Load and stores are lighter weight,
have lower latency, and can leverage processor mechanisms
to hide memory latency, such as pipelining, out-of-order and
speculative execution, and prefetching [17, 27]. CXL is also
more promising than prior attempts at hardware memory
disaggregation [1, 7, 16, 19, 25] because it has gained wide
support from industry, frommemory makers (Samsung, Mi-
cron, SKHynix), toOEMs (e.g.,HPE,Dell),CPUmanufacturers
(Intel, AMD), and startups.

The current proposals for CXLmemory disaggregation [8,
27, 29] are based on physical memory pools (Figure 1a),
where the memory pool is physically separate from each
server. Unfortunately, physical memory pools have fourmain

https://doi.org/10.1145/3626111.3628201
https://doi.org/10.1145/3626111.3628201

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emmanuel Amaro et al.

drawbacks. First, they incur additional monetary cost due to
the need for thememory pool hardware (power supply, moth-
erboard and CPU, or custom ASIC or FPGA), physical space
in the rack, and fabric ports on the switch to connect the pool.
Second, even with CXL, physical pools incur a performance
penalty, as memory accesses to the pool are slower than local
memory by 3-10× [27, 30, 44]. Third, physical pools do not
have CPUs, GPUs, or accelerators for near-memory comput-
ing;while one could imagine adding these to thepool, itwould
exacerbate cost. Fourth, physical pools impose a fixed ratio
of local to pooled memory: once the system is deployed, this
ratio is hard to adjust because it requires physically moving
memory between servers and the pool. Meanwhile, recent
work [27, 44] has shown that even with CXL, workloads can
be highly impacted when their working set does not fit in
local memory. Thus, to support a variety of workloads on the
same deployment, we may be forced to overprovision local
memory to provide good performance for all workloads, but
this approach negates the main benefits of disaggregation.

To address these drawbacks, in this paper we advocate for
a newmemory disaggregation architecture based on logical
memory pools (Figure 1b). The key idea is to create a mem-
ory pool by carving out parts of the local memory from each
server, rather than using a physically separate box. In this
manner, we logically partition each server’s memory into pri-
vate and shared regions, where the union of all shared regions
constitute the disaggregated memory. Similarly to physical
pools, logical pools improve resource utilization. Unlike their
physical counterparts, logical pools have lower cost, provide
disaggregated memory with near-memory computing, and
are more flexible. In more detail, logical pools are less costly
because they avoid the extra hardware of the memory pool,
its rack space, and its use of ports on the fabric switch (only
the servers are connected to the switch). Logical pools sup-
port near-memory computations on disaggregated memory
throughthreemechanisms:dataplacement,datamigration (as
in NUMAmigration), and compute shipping. Near-memory
computations do not require any extra hardware because
servers already have powerful processors connected to the
memory—not only CPUs, but possibly GPUs and other ac-
celerators. With near-memory computation, both bandwidth
and latency are significantly better than with CXL physical
pools (e.g., see Table 1). Lastly, logical pools are flexible be-
cause the divisionof private and shared regions on each server
can vary over time and per server, to dynamically address the
needs of different workloads.
We present an early assessment of the benefits of logical

pools over physical pools. Our findings suggest that logical
pools provide higher disaggregated memory bandwidth and
they accommodate a broader spectrum of workloads for a
fixed total memory budget. As CXL fabrics for disaggregated

Latency (ns) Bandwidth (GB/s)

Local memory 82 97
CXL remote memory 280 or 303 31 or 20

Table 1: Latency and bandwidth for differentmemory types.
Local numbers are fromourevaluation (§4).CXLnumbers are
fromPond [27] or anFPGA[44], respectively. InPond, latency
is estimated using a switch, and bandwidth is themaximum
bandwidthofPCIe5with8lanes.TheFPGAhasDDR4memory
connected locally to the host via PCIe5 with 16 lanes.

memory are not yet available, we parameterize our experi-
ments based on a slowdown of the disaggregated memory
relative to local memory. Our evaluation indicates that logical
pools can provide up to 4.7× higher bandwidth than physical
pools. Furthermore, we highlight scenarios where the flexible
ratio of logical pools enables workloads that are infeasible
using physical pools when the total deployment memory is
held constant.

Given the many benefits of logical pools shown in this pa-
per, we believe the CXL community should refocus its efforts
from physical to logical memory pools.
Realizing logical memory pools creates five major chal-

lenges. First, we must design policies to choose the ratio of
private to shared memory in each server, in addition to mech-
anisms to inform such policies by monitoring use. Second,
to leverage near-memory computing, we need policies and
mechanisms that migrate memory buffers to the servers that
willmost benefit from local access, or ship computations to the
server with local access. Third, we need an efficient and flex-
ible addressing mechanism for buffers in the logical pool that
allows migration: as buffers can be shared, different servers
may have pointers to the buffer beingmigrated andmigration
shouldnotcorrupt thesepointers. Fourth, similarly tophysical
memory pools, we must balance scalability with cache coher-
ence. Finally, we need mechanisms to handle server crashes,
which take down part of the memory pool. These challenges
must be overcome in a distributed, high-performance context.

The rest of this paper is organizedas follows: §2 coversback-
ground and motivation. We describe our proposal in more
detail in §3, and §4 focuses on the benefits of LMPs. We then
discuss challenges associated with LMPs in §5, and §6 covers
related work. We conclude in §7.

2 Background andMotivation

2.1 Memory Disaggregation

Many prior research efforts show the potential of memory
disaggregation with high-performance network fabrics. For
example, CFM leverages OS-level mechanisms to improve
job throughput using far memory [2]; MIND employs pro-
grammable switches for rack-scale disaggregated memory

Logical Memory Pools:
Flexible and Local DisaggregatedMemory HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

management [26]; and AIFM provides libraries for applica-
tions to use far memory with high performance [39]. These
efforts rely on software memory disaggregation: software
inititates requests to access disaggregated memory and ac-
knowledges completions. For instance, using RDMA, appli-
cation libraries or the OS must post memory access requests
to network queues; the NIC then adds completions to comple-
tion queues, which software drains. This process is slow and
poorly aligned with CPU architectural features. Further, this
problem is common to most network transports, including
TCP, where CPU overheads are even larger, exacerbating the
performance impact of software memory disaggregation.
An emerging technology, Compute Express Link (CXL),

enables hardware memory disaggregation. While memory
disaggregation is not novel [1, 25], CXL has garnered robust
industry support, which can lead to broader adoption and
impact. For example, recent Intel and AMD CPUs support
early CXL versions. By integrating CXL ports directly into
CPUs, processors can directly address disaggregatedmemory,
enabling CPU architectural features like caching, prefetch-
ing, pipelining, and speculative execution. As a result, hard-
ware memory disaggregation reduces CPU overheads, low-
ers latency, and increases throughput compared to previous
software approaches. Early performance evaluations on CXL
prototype exist [27, 44]; Table 1 summarizes them and com-
pares them to local memory. Bandwidth is expected to be
4-10× lower, and latency 3-5× higher, than local memory.
Thus, while hardware disaggregated memory performs sig-
nificantly better than software disaggregated memory, it is
still expected to be slower than local memory.

2.2 CXL-BasedMemory Pools

We now discuss additional CXL details relevant to memory
pools. CXL is a family of low latency, high throughput I/O
bus architectures designed to interconnect hosts, accelerators,
and memory devices. It uses the ubiquitous PCIe electrical
interface and defines three protocols: CXL.io, CXL.cache, and
CXL.mem.CXL.io provides I/O semantics and is implemented
by all CXL devices because it is used by the control path.
CXL.cache implements a cache synchronization protocol for
device and CPU caches, and CXL.mem provides a transac-
tional interface between CPUs and CXLmemory devices.
CXL defines three device-types: Type-1 and Type-2 are

accelerators, and Type-3 are memory devices. Our focus is
on Fabric-AttachedMemory (FAM) Type-3 devices that use
CXL.mem, and can be accessed by multiple hosts. FAMs can
expose one or more disjoint memory regions. Two enhanced
versions of FAMsaredefined:Global FAMs that usePortBased
Routing (PBR) allowing them to scale to a rack; and Shared
FAMs that allow a single memory region to be concurrently
accessed frommultiple hosts.

In this paper, we use the term memory pool to refer to
Global Shared Fabric-Attached Memory. We assume CXL (or
similar technology) will support Shared FAMs and the abil-
ity for one server to access physical memory provided by
DIMMs on the motherboard of another server. CXL allows
coherency for Shared FAMs to be implemented in hardware
withmulti-host support (i.e., via an Inclusive Snoop Filter and
a Back-Invalidation protocol), or through software-managed
coherency.

3 Logical Memory Pool
This section first positions Logical Memory Pools (LMPs) in
the context of memory disaggregation by delineating shared
and unique capabilities compared to physical memory pools.
An architecture overview of LMPs follows.

3.1 Key Capabilities

LMPs shares three capabilities with CXL physical pools. First,
servers in both types of pools use the standardCPU load-store
memory interface to a global fabric address space. Second,
servers can access more memory than locally present. Third,
the memory pool serves as shared memory for servers.
LMPs provide two unique capabilities not offered by CXL

physical pools. First, all memory in an LMP can be accessed
at local memory speeds by the server hosting it, delivering
the key performance advantage of LMPs. Second, servers can
dynamically adjust their ratio of private to shared memory,
providing flexibility to adapt to the working set sizes of ac-
tive applications. Recent work has shown the importance of
fitting the working set into memory with local access speeds,
even inCXL environments [27, 44]. However, an advantage of
physical memory pools over LMPs is that the former permit
a more independent scaling of memory and compute.

3.2 Architecture

In LMPs, a server’s privatememory is exclusively accessed by
its processors andmaintains local system state, such as theOS
and process control blocks, as well as per-process state like
stack, heap, and text sections. In contrast, shared regions are
globally accessible by any server, and constitute the disaggre-
gated memory, creating a NUMA-like systemwith different
access latencies (local and remote).We envision LMPs provid-
ing 10–100 TB of shared memory while enabling its servers
to achieve high memory utilization, thus reducing total cost
of ownership.

Cachecoherenceacrossmultiple servers canpresenta scala-
bilitychallenge, ashasbeenpreviouslyobserved indistributed
shared memory [1, 5, 25]. Therefore, LMPs do not assume
cache coherence for all shared memory. Instead, it provides
a small amount (a few GBs) of coherent memory that can
be used for coordination and synchronization. Limiting the
amount of coherent memory lessens the likelihood of filling

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emmanuel Amaro et al.

Remote link Uncore freq. Min lat. Max lat. Bandwidth

Link0 2.2Ghz 163ns 418ns 34.5GB/s
Link1 0.7Ghz 261ns 527ns 21.0GB/s

Table 2: Minimum and maximum latency under load, and
bandwidth, achieved for two emulated CXL links. Link0
is the default UPI configuration. Link1 is a slowed down
UPI link for which we decrease the remote CPU’s uncore
frequency to 0.7Ghz.

CXL’s Inclusive Snoop Filter and allows tracking coherence
at a granularity finer than a cache line to avoid false sharing.

As LMPs present a load-store interface on a global address
space, it is important to have an efficient addressing scheme.
Local references, or referenceswhoseglobal address resolve to
the same server, avoidCXL traffic.On the other hand, accesses
to remote references, or references that resolve to another
server, induce fabric traffic. Accessing remote references will
have higher latency and lower throughput compared to lo-
cal references, as discussed in §2. Thus, in order to enhance
data locality, the addressing scheme should permit data mi-
gration across servers. That is, migrating a buffer should not
invalidate its address.

Implementing LMPs requires a per-server runtime and an
application library for allocating, controlling, and setting up
disaggregated memory access—for example, by mapping a
rangeof virtual addresses tomemory in thepool. Furthermore,
the runtime must execute at least two background tasks: one
for adjusting the size of shared regions tominimize remote ac-
cesses, and another to find opportunities for buffer migration.
We discuss the challenges associated with shared cache

coherent regions, memory addressing schemes, and policies
for adjusting size of shared regions and migration in §5.

4 Benefits
We preliminarily evaluate the benefits of LMPs over physical
pools, including their lower entrybarrier, and superiorflexibil-
ity and performance as demonstrated by microbenchmarks.

4.1 Evaluation setup

Testbed. We use a two-socket server with Intel Xeon Gold
5120 CPUs, each with 14 cores at a fixed frequency of 2.2Ghz.
The system has 192GB DRAM, with 96GB per NUMA node.
Nodes are connected with two bidirectional UPI links [20].

Remote links. While a CXL 3 fabric is required for both
logical and physical memory pools (see §2.2), this technology
is not yet available. Therefore, we emulate the fabric using
UPI links. Given that CXL fabrics are expected to underper-
form UPI links due to longer wires, and the necessity for
re-timers [27], we artificially decrease the remote socket’s un-
core frequency to slow downmemory accesses over UPI. We

label the slowed down link as Link1, and use Link0 as the base-
line UPI link. A characterization of both links’ read latency
under load is provided in Table 2. We posit that Link0 repre-
sents an upper bound for future CXL remote performance
while Link1 is a closer approximation.

Memory pool configurations. In our microbenchmarks,
we consider one logical memory pool and two physical mem-
ory pool setups, each with 4 servers and a total memory bud-
get of 96GB. In the physical pool setups, the memory pool
has 64GB, and each server keeps 8GB of local memory. The
first physical pool setup (Physical cache) uses local memory as
cache for the pooled memory, while the second one (Physical
no-cache) does not use its local memory as cache. Caching
incurs an upfront memcpy() overhead but provides faster sub-
sequent reads. In contrast, the LMP setup (Logical) uniformly
distributes the 96GB, assigning 24GB to each server. Although
the specificmemory capacitieswe employ are small compared
to real deployments, we are more interested in the ratios of
pooled to local memory.

Microbenchmark. Wemeasure the bandwidth used by
a multi-core server as it performs an aggregation on a large
vector in disaggregated memory. More precisely, one server
computes the sum of a vector using 14 cores, where each core
sums part of the vector.We repeat this process 10 times and re-
port the average bandwidth.We run the experiment using the
two UPI link configurations (Link0 and Link1) and we consider
four vector sizes: 8GB, 24GB, 64GB, 96GB.

4.2 Benefit 1: Lower Entry Barrier

We first examine the cost implications of LMPs compared to
physical pools by comparing the total required resources for
each deployment. While both require a fabric switch and a
fabric adapter per server, physical pools demand additional
components such as a power supply, motherboard, and CPUs
or customASICs/FPGAs to function as thememorypool.Also,
physical pools require extra rack space and additional switch
ports. Further, provisioning the switch↔pool link with the
same capacity a server↔switch link can create incast prob-
lems at the physical pool, demanding either a higher-capacity
link or multiple links (thick orange line in Figure 1(a)). In con-
trast, LMPs use existing rack infrastructure and do not require
extra rack space or fabric ports. Although incast problems are
possible with LMPs, they have three ways to prevent it: data
placement, data migration, and compute shipping.

Focusingonmemory,wecontrastLMPswithphysicalpools
in two scenarios. The first scenario provides an equal amount
of disaggregated memory to both deployments. Here, the
physical deployment is more costly due to its need for supple-
mentarymemory to function as local memory for each server.
In the second scenario, both deployments have equal total
memory, and so the physical deployment needs to delegate

Logical Memory Pools:
Flexible and Local DisaggregatedMemory HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

Link0 Link1

20
40
60
80

100

Ag
gr

eg
at

io
n

BW
 (G

B/
s)

Physical no-cache Physical cache Logical

Figure 2: 8GB vector sum.

Link0 Link1

20

40

60

80

100

Ag
gr

eg
at

io
n

BW
 (G

B/
s)

Figure 3: 24GB vector sum.

Link0 Link10

20

40

Ag
gr

eg
at

io
n

BW
 (G

B/
s)

Figure 4: 64GB vector sum.

Link0 Link10

10

20

30

Ag
gr

eg
at

io
n

BW
 (G

B/
s)

X XX X

Figure 5: 96GB vector sum.

somememory to thememory pool. This causes servers to end
up with less local memory than LMP servers. From these two
scenarios, we find that LMPs are better than physical pools
either economically (first scenario) or operationally (second
scenario).

4.3 Benefit 2: EnhancedMemory Performance

Accessing disaggregated memory in LMPs is at least as fast
as accessing a physical pool in all cases. Moreover, when an
LMP server accesses memory in the pool that resolves locally,
LMPs provide faster access. This advantage is illustrated in
Figure 2 and Figure 3 for the vectors of size 8GB and 24GB,
which fit entirely in the local memory of one LMP server. We
see that LMPs deliver up to 4.7× improved bandwidth com-
pared to Physical no-cache for both 8GB and 24GB vectors, and
up to 3.4× compared to Physical cache for the 24GB vector.
LMPs maintain a performance advantage even when data

sizeexceedsaserver’s localmemorycapacity.For instance, the
64GB vector does not fully fit in the cache of Physical cache, or
in the localmemoryof anLMPserver.However, anLMPserver

can access 3/8 of the vector locally. As Figure 4 shows, this
leads to Logical providing 42% higher bandwidth than Physical
cache on Link1. Moreover, the slower the remote link, the bet-
ter the performance of LMPs relative to physical pools. This is
because as remotememory gets slower, the unaffected perfor-
mance of localmemory for Logical delivers a higher advantage.

While ourmicrobenchmarks focused on bandwidth, a simi-
laranalysisapplies for latency,whereLMPswouldoutperform
thephysical pool. This is because themaximumremote loaded
latency is 2.8× and 3.6× higher than maximum loaded local
latency, when using Link0 and Link1 links, respectively.

4.4 Benefit 3: Near-memory Computing

If we distribute the sum across LMP servers, then each server
could access different parts of the vector locally. Thus, LMPs
can use computation shipping to further enhance perfor-
mance through near-memory computing so that all memory
accessesare local.Theendresult is aneven largerperformance
improvement than reported above (not shown). Computation
shipping requires a more sophisticated runtime and possibly
application changes, but it can be done in LMPs using server
CPUs. In contrast, with physical pools, computation shipping
either is infeasible or requires additional processinghardware,
exacerbating its cost.

4.5 Benefit 4: Memory Flexibility

As we mentioned before, LMPs are ratio-flexible as servers
can adjust the size of their private and shared regions to adapt
to workload requirements. This is illustrated with the exper-
iment using the 96 GB vector in Figure 5. With LMPs, each
server can contribute all of its memory to the logical pool,
allowing the deployment to fit the vector. The physical pool,
however, has too little memory in the pool (64GB) to fit the
vector and cannot run the workload. It is impossible to recon-
figure it short of physically moving memory DIMMs from
servers to the memory pool.

5 Challenges

There are five main challenges in realizing LMPs.

Cache coherence. For scalability reasons, we do not ex-
pect LMPs to provide cache coherence for most of the shared
memory, but they should provide a few GBs of cache coher-
ent shared memory (coherent memory) for synchronization
purposes (§3.2). However, achieving high-performance even
for a small amount of coherent memory is non-trivial. A co-
herence engine must interpose on all accesses to coherent
memory, a requirement that can potentially slow down local
accesses. We can address this by leveraging approaches that
place coherence engines in fabric switches to minimize the
cost of interposition. In addition, applications can leverage
prior work on scalable coordination mechanisms to reduce

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emmanuel Amaro et al.

coherence traffic on coherent memory, such as NUMA-aware
coordination [6, 9–11, 24].

Sizingthesharedregions. Strikingabalance in thesizeof
sharedmemory regions is critical, as demonstratedby thefind-
ings in §4.5. Oversizing the shared regions can negatively af-
fect performance of localworkloads if the localmemory ismo-
nopolized by remote servers. On the other hand, undersizing
the shared region can render the LMP insufficient for the ap-
plication needs. Thus, the challenge is to make disaggregated
data to tightly fit in the LMP’s shared regions. Finding this bal-
ance can be formulated as a global optimization problem that
is solvedperiodically.Theobjective is tomaximize thenumber
of local accesses while prioritizing high-value applications.

Locality balancing. Similar to NUMA balancing in multi-
socket machines, LMPs need to periodically migrate data
between servers to maximize the number of local accesses.
Balancing is evenmore important for LMPs thanmulti-socket
systems, because the difference between fast and slow ac-
cesses is greater in LMPs. Yet balancing between servers is
harder since it is a distributed systems problem: we need new
mechanisms to identify slowaccesses (NUMAsystemsunmap
memory to cause page faults, but this is too slow for LMPs),
and new policies to decide what data to migrate (NUMA sys-
tems can rely on the kernel to drive policy). For the former,
a simple solution is to use performance counters to profile
accesses. For the latter, one could use access bits to identify
hot remote data for each server.

Address translation. Toprovide locality balancing, LMPs
must support logical addresses and an efficient scheme to
translate logical addresses to their physical address (a server
and a physical address within the server). A traditional ap-
proach is to use a directory that maps logical addresses to
physical locations (e.g., a multi-level page table with TLBs)
but this approach is too inefficient for our use, because all
servers need access to the directory when translating ad-
dresses, and this would incur slow remote accesses. A better
solution is to translate in two steps: first, map a logical ad-
dress to a server, then map the address within the server. The
first step uses coarse-grained maps, which can be globally
accessible, while the second step is more fine grained and can
be resolved locally within the target server.

Failure domains. Failures of memory may occur in both
LMPs and physical pools, albeit in slightly different ways.
With LMPs, memory failures come from host crashes while
with physical pools it comes frommemory pool crashes. To
handle failures, LMPs can take advantage of similar solutions
proposed for physical pools, such as failure masking through
replication or erasure coding [49], or failure reporting to ap-
plication through exceptions.

6 RelatedWork
We propose a new CXL-based disaggregated memory archi-
tecture, but our work is related to work in several other areas.

NUMA. NUMA (Non-UniformMemory Access) is a type
of computer architecture for systemswithmanyCPU sockets,
where each socket has its own local memory, and sockets can
access another socket’s memory, albeit with higher latency.
While NUMA architectures are typically used within a server,
LMP’s non-uniformmemory access characteristics are sim-
ilar to those in the NUMA architecture. Therefore, we believe
work done for NUMA (e.g.,NUMAmigration, NUMA-aware
data structures, NUMA locks, etc.) will be useful for LMPs.

Remote memory systems using RDMA. RDMA (Re-
mote Direct Memory Access) allows a host to access memory
on another host without involving the remote processor. Un-
like CXL (and LMP), RDMA requires the host to issue NIC
IOs to read and write remote memory instead of loads and
stores (as in LMPs). Remote memory systems encapsulate
these IOs in user libraries for accessing the remote mem-
ory (e.g., FaRM [12, 13], scale-out NUMA [35], scale-out cc-
NUMA [15], RackOut [36], FaSST [23], Storm [37]). RDMA
based systems resemble LMPs in its memory flexibility, and
we believe some RDMA-based techniques can be carried over
to LMPs to benefit key-value stores (e.g., [22, 33]), databases
(e.g., [40, 48]), HPC (e.g., [14, 21, 46]), distributed file systems
(e.g., [31, 32, 47]), and many other systems.

Softwarememory disaggregation. The recent prolifer-
ation of fast local area networks has led to many systems that
use thememory of a remote host (“farmemory”) to extend the
local memory capacity through a software solution. This idea
can be implemented using transparent paging (CFM [2], In-
finiswap [18]) or runtime libraries (AIFM [39], Carbink [49]).

DSM. There is much work on DSM (Distributed Shared
Memory) systems (e.g., [1, 3, 4, 25, 28, 34, 41, 42]), whose goal
is to emulate a shared memory system using a distributed
system. This goal turned out to be elusive due to the diffi-
culty of getting reasonable performance, especially due to the
cache-coherence requirement of such systems. DSM systems
have had both software and hardware implementations, and
disaggregated memory systems are most similar to hardware
DSMs. From thework on hardwareDSMs,we learn that cache
coherence is hard to scale well.

7 Conclusion
Hardware memory disaggregation is finally becoming a real-
itywithCXL.TheCXLcommunity is currently targetingphys-
ical memory pools to achievememory disaggregation, but we
believe they should refocus to provide instead logicalmemory
pools due to its many advantages, as shown in this paper.

Logical Memory Pools:
Flexible and Local DisaggregatedMemory HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

References
[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L Johnson,

David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie,
and Donald Yeung. 1995. The MIT Alewife machine: Architecture and
performance. ACM SIGARCH Computer Architecture News 23, 2 (1995),
2–13.

[2] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. 2020. Can far memory improve job throughput?. In
European Conference on Computer Systems. 1–16.

[3] Cristiana Amza, Alan L. Cox, Shandya Dwarkadas, Pete Keleher,
Honghui Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy
Zwaenepoel. 1996. TreadMarks: Shared Memory Computing on
Networks ofWorkstations. IEEE Computer 29, 2 (Feb. 1996), 18–28.

[4] J. K. Bennett, J. B. Carter, andW. Zwaenepoel. 1990. Munin: Distributed
Shared Memory Based on Type-specific Memory Coherence. InACM
Symposium on Principles and Practice of Parallel Programming. 168–176.

[5] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang
Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and ShengWang.
2018. Efficient distributed memory management with RDMA and
caching. 11, 11 (2018), 1604–1617.

[6] IrinaCalciu,DaveDice,Yossi Lev,VictorLuchangco,Virendra JMarathe,
and Nir Shavit. 2013. NUMA-aware reader-writer locks. In ACM
Symposium on Principles and Practice of Parallel Programming. 157–166.

[7] CCIX Consortium. Accessed 2023/01/26. CCIX. (Accessed 2023/01/26).
https://www.ccixconsortium.com/wp-content/uploads/2019/11/
CCIX-White-Paper-Rev111219.pdf.

[8] cxl [n. d.]. Compute Express Link (CXL). ([n. d.]). https:
//www.computeexpresslink.org.

[9] Rafael Lourenco de Lima Chehab, Antonio Paolillo, Diogo Behrens,
Ming Fu,HermannHärtig, andHaiboChen. 2021. Clof: A compositional
lock framework for multi-level NUMA systems. In ACM Symposium
on Operating Systems Principles. 851–865.

[10] Dave Dice and Alex Kogan. 2019. Compact NUMA-aware locks. In
Proceedings of the Fourteenth EuroSys Conference 2019. 1–15.

[11] David Dice, Virendra J Marathe, and Nir Shavit. 2012. Lock cohorting:
a general technique for designing NUMA locks. ACM SIGPLAN Notices
47, 8 (2012), 247–256.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In Symposium on
Networked Systems Design and Implementation. 401–414.

[13] Aleksandar Dragojević, Dushyanth Narayanan, Ed Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No compromises: distributed transactions with consis-
tency, availability, and performance. In ACM Symposium on Operating
Systems Principles. 54–70.

[14] PhilipWerner Frey and Gustavo Alonso. 2009. Minimizing the hidden
cost of RDMA. In 2009 29th IEEE International Conference on Distributed
Computing Systems. IEEE, 553–560.

[15] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald,
Boris Grot, and Vijay Nagarajan. 2018. Scale-out ccNUMA: Exploiting
skew with strongly consistent caching. In European Conference on
Computer Systems. 1–15.

[16] genz [n. d.]. Gen-Z consortium. ([n. d.]). https://genzconsortium.org.
[17] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo

Jung. 2022. Direct Access, High-Performance Memory Disaggregation
with DirectCXL. In USENIX Annual Technical Conference.

[18] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with
INFINISWAP. In Symposium on Networked Systems Design and
Implementation. 649–667.

[19] Intel. Accessed 2023/01/26. Intel Rack Scale Architec-
ture. (Accessed 2023/01/26). https://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
rack-scale-design-architecture-white-paper.pdf.

[20] Intel. Accessed 2023/06/29. Intel Xeon Processor Scal-
able Family Technical Overview. (Accessed 2023/06/29).
https://www.intel.com/content/www/us/en/developer/articles/
technical/xeon-processor-scalable-family-technical-overview.html.

[21] Nusrat Sharmin Islam, Dipti Shankar, Xiaoyi Lu, MdWasi-Ur-Rahman,
and Dhabaleswar K Panda. 2015. Accelerating I/O performance of big
data analytics on HPC clusters through RDMA-based key-value store.
In International Conference on Parallel Processing. 280–289.

[22] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMAEfficiently for Key-Value Services. InACM Special Interest Group
on Data Communications.

[23] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs. In Symposium on Operating Systems Design
and Implementation. 185–201.

[24] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, ChangwooMin, and
Taesoo Kim. 2019. Scalable and practical locking with shuffling. In
ACM Symposium on Operating Systems Principles. 586–599.

[25] James Laudon and Daniel Lenoski. 1997. The SGI Origin: a ccNUMA
highly scalable server. ACM SIGARCH Computer Architecture News
25, 2 (1997), 241–251.

[26] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin
Zhong, and Abhishek Bhattacharjee. 2021. Mind: In-network memory
management for disaggregated data centers. In ACM Symposium on
Operating Systems Principles. 488–504.

[27] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar
Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023.
Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems.

[28] Kai Li and Paul Hudak. 1989. Memory Coherence in Shared Virtual
Memory Systems. ACM Transactions on Computer Systems 7, 4 (Nov.
1989), 321–359.

[29] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated
Memory for Expansion and Sharing in Blade Servers. In International
Symposium on Computer Architecture.

[30] Ming Liu. 2023. Fabric-Centric Computing. InWorkshop on Hot Topics
in Operating Systems. 118–126.

[31] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled Distributed Persistent Memory File System. In USENIX
Annual Technical Conference.

[32] ShaonanMa, TengMa, Kang Chen, and YongweiWu. 2022. A Survey
of Storage Systems in the RDMA Era. IEEE Transactions on Parallel
and Distributed Systems (2022).

[33] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using
One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store.
In USENIX Annual Technical Conference.

[34] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-tolerant Software
Distributed Shared Memory. In USENIX Annual Technical Conference.
291–305.

[35] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak
Falsafi, and Boris Grot. 2014. Scale-out NUMA. InACM International
Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://genzconsortium.org
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Emmanuel Amaro et al.

[36] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. 2016. The case for RackOut: Scalable data serving using
rack-scale systems. In ACM Symposium on Cloud Computing. 182–195.

[37] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying
Zhang, Haggai Eran, Boris Pismenny, Liran Liss, Michael Wei, Dan
Tsafrir, and Marcos K. Aguilera. 2019. Storm: a fast transactional
dataplane for remote data structures. In ACM International Conference
on Systems and Storage. 97–108.

[38] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda Lu,
Yiying Zhang, Miryung Kim, and Guoqing Harry Xu. 2023. Hermit:
Low-Latency, High-Throughput, and Transparent Remote Memory via
Feedback-Directed Asynchrony. In Symposium on Networked Systems
Design and Implementation. 181–198.

[39] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam
Belay. 2020. AIFM: High-performance, application-integrated far mem-
ory. In Symposium on Operating Systems Design and Implementation.
315–332.

[40] André Ryser, Alberto Lerner, Alex Forencich, and Philippe Cudré-
Mauroux. 2022. D-RDMA: Bringing Zero-Copy RDMA to Database
Systems. In Conference on Innovative Data Systems Research.

[41] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A.
Thekkath. 1996. Shasta: A Low Overhead, Software-only Approach
for Supporting Fine-grain Shared Memory. In ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems. 174–185.

[42] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt,
James R. Larus, and David A.Wood. 1994. Fine-grain Access Control
for Distributed Shared Memory. In ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems. 297–306.

[43] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. Le-
goOS:ADisseminated,DistributedOS forHardwareResourceDisaggre-
gation. In Symposium onOperating Systems Design and Implementation.

[44] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, RenWang,
and Nam Sung Kim. 2023. Demystifying CXLMemory with Genuine
CXL-Ready Systems and Devices. arXiv preprint arXiv:2303.15375
(2023).

[45] ChenxiWang, Yifan Qiao, HaoranMa, Shi Liu, Wenguang Chen, Ravi
Netravali, Miryung Kim, andGuoqingHarry Xu. 2023. Canvas: Isolated
and Adaptive Swapping for Multi-Applications on Remote Memory. In
Symposium onNetworked Systems Design and Implementation. 161–179.

[46] Hao Wang, Sreeram Potluri, Devendar Bureddy, Carlos Rosales, and
Dhabaleswar K Panda. 2013. GPU-aware MPI on RDMA-enabled
clusters: Design, implementation and evaluation. IEEE Transactions
on Parallel and Distributed Systems 25, 10 (2013), 2595–2605.

[47] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion:
A Distributed File System for Non-Volatile Main Memory and
RDMA-Capable Networks. In USENIX Conference on File and Storage
Technologies, Vol. 19. 221–234.

[48] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska.
2019. Rethinking Database High Availability with RDMA Networks.
Proceedings of the VLDB Endowment 12, 11 (2019), 1637–1650.

[49] Yang Zhou, Hassan Wassel, Sihang Liu, Jiaqi Gao, James Mickens,
Minlan Yu, Chris Kennelly, Paul Jack Turner, David E Culler, Hank
Levy, and Amin Vahdat. 2022. Carbink: Fault-tolerant Far Memory.
In Symposium on Operating Systems Design and Implementation.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory Disaggregation
	2.2 CXL-Based Memory Pools

	3 Logical Memory Pool
	3.1 Key Capabilities
	3.2 Architecture

	4 Benefits
	4.1 Evaluation setup
	4.2 Benefit 1: Lower Entry Barrier
	4.3 Benefit 2: Enhanced Memory Performance
	4.4 Benefit 3: Near-memory Computing
	4.5 Benefit 4: Memory Flexibility

	5 Challenges
	6 Related Work
	7 Conclusion
	References

